1
|
Fang J, Li G, Luo W, Hu Q. Understanding Genetic Regulation of Sex Differentiation in Hermaphroditic Fish. Animals (Basel) 2025; 15:119. [PMID: 39858119 PMCID: PMC11759146 DOI: 10.3390/ani15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
As a fundamental taxonomic group within vertebrates, fish represent an invaluable resource for investigating the mechanisms underlying sex determination and differentiation owing to their extensive geographical distribution and rich biodiversity. Within this biological cohort, the processes of sex determination and differentiation are intricately governed by both genetic factors and the complex interplay of environmental cues. While variations in external environmental factors, particularly temperature, can exert a modulatory influence on sex differentiation in fish to a limited degree, genetic factors remain the primary determinants of sexual traits. Hermaphroditic fish display three distinct types of sexual transitions: protandry (male to female), protogyny (female-to-male), bidirectional sex change (both directions serially). These fish, characterized by their unique reproductive strategies and sexual plasticity, serve as exemplary natural models for elucidating the mechanisms of sex differentiation and sexual transitions in fish. The present review delves into the histological dynamics during gonadal development across three types of sequential hermaphroditic fish, meticulously delineating the pivotal characteristics at each stage, from the inception of primordial gonads to sexual specialization. Furthermore, it examines the regulatory genes and associated signaling pathways that orchestrate sex determination and differentiation. By systematically synthesizing these research advancements, this paper endeavors to offer a comprehensive and profound insight into the intricate mechanisms governing sex differentiation in sequential hermaphroditic fish.
Collapse
Affiliation(s)
- Junchao Fang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Guanglve Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
| | - Wenyin Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.F.); (G.L.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| |
Collapse
|
2
|
Wang Y, Lin J, Li W, Ji G, Liu Z. Identification, Expression and Evolutional Analysis of Two cyp19-like Genes in Amphioxus. Animals (Basel) 2024; 14:1140. [PMID: 38672288 PMCID: PMC11047327 DOI: 10.3390/ani14081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The mechanism of sex determination and differentiation in animals remains a central focus of reproductive and developmental biology research, and the regulation of sex differentiation in amphioxus remains poorly understood. Cytochrome P450 Family 19 Subfamily A member 1 (CYP19A1) is a crucial sex differentiation gene that catalyzes the conversion of androgens into estrogens. In this study, we identified two aromatase-like genes in amphioxus: cyp19-like1 and cyp19-like2. The cyp19-like1 is more primitive and may represent the ancestral form of cyp19 in zebrafish and other vertebrates, while the cyp19-like2 is likely the result of gene duplication within amphioxus. To gain further insights into the expression level of these two aromatase-like, we examined their expression in different tissues and during different stages of gonad development. While the expression level of the two genes differs in tissues, both are highly expressed in the gonad primordium and are primarily localized to microsomal membrane systems. However, as development proceeds, their expression level decreases significantly. This study enhances our understanding of sex differentiation mechanisms in amphioxus and provides valuable insights into the formation and evolution of sex determination mechanisms in vertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Zhenhui Liu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (J.L.); (W.L.); (G.J.)
| |
Collapse
|
3
|
Valli FE, Simoncini MS, González MA, Piña CI. How do maternal androgens and estrogens affect sex determination in reptiles with temperature-dependent sex? Dev Growth Differ 2023; 65:565-576. [PMID: 37603030 DOI: 10.1111/dgd.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Temperature sex determination (TSD) in reptiles has been studied to elucidate the mechanisms by which temperature is transformed into a biological signal that determines the sex of the embryo. Temperature is thought to trigger signals that alter gene expression and hormone metabolism, which will determine the development of female or male gonads. In this review, we focus on collecting and discussing important and recent information on the role of maternal steroid hormones in sex determination in oviparous reptiles such as crocodiles, turtles, and lizards that possess TSD. In particular, we focus on maternal androgens and estrogens deposited in the egg yolk and their metabolites that could also influence the sex of offspring. Finally, we suggest guidelines for future research to help clarify the link between maternal steroid hormones and offspring sex.
Collapse
Affiliation(s)
- Florencia E Valli
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melina S Simoncini
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Argentina
| | - Marcela A González
- Departamento de Ciencias Biológicas, Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos I Piña
- CICYTTP-CONICET/Prov. Entre Ríos/UADER, Diamante, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Argentina
| |
Collapse
|
4
|
Wang W, Liang S, Zou Y, Li Z, Wu Q, Wang L, Wu Z, Peng Z, You F. Expression of scp3 and dazl reveals the meiotic characteristics of the olive flounder Paralichthys olivaceus†. Biol Reprod 2023; 108:218-228. [PMID: 36308428 DOI: 10.1093/biolre/ioac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Olive flounder Paralichthys olivaceus is an important cultured marine fish. We found that the meiosis marker scp3 and its intrinsic regulator dazl were mainly expressed in the gonads. During the ovarian differentiation, scp3 signal was detected first in pre-meiotic oogonia at 60-mm total length (TL) and then in primary oocytes at 80- and 100-mm TL, with a sharp increase in scp3 expression level observed at 80- and 100-mm TL. Dazl signal was detected in primordial germ cells at 30-mm TL and oogonia at 60-mm TL, but no significant change of expression was observed. During the testicular differentiation period, scp3 and dazl expression remained at low levels, and scp3 signal was weakly detected in spermatogonia at 80-mm TL, whereas dazl signal was not found. During the ovarian developmental stages, the highest expression levels of scp3 and dazl were detected at stages I and II, respectively, and strong signals of scp3 and dazl were detected in primary oocytes and oocytes at phases I and II. In the testis, the high expression of scp3 and dazl was detected at stages II-IV and II-III, respectively. Scp3 signal was weakly observed in pre-meiotic spermatogonia at stages I and II and strongly detected in primary spermatocytes at stages III-V. Dazl was detected in the nuclei of spermatogonia and spermatids at stages II-IV. Furthermore, scp3 expression in the ovary could be promoted by 17α-ethynylestradiol and tamoxifen, whereas dazl expression could be downregulated by tamoxifen.
Collapse
Affiliation(s)
- Wenxiang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shaoshuai Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Yuxia Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Ze Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiaowan Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhihao Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Zhuangzhuang Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, P.R. China
| |
Collapse
|
5
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
6
|
Function of Foxl2 and Dmrt1 proteins during gonadal differentiation in the olive flounder Paralichthys olivaceus. Int J Biol Macromol 2022; 215:141-154. [PMID: 35716793 DOI: 10.1016/j.ijbiomac.2022.06.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Study on fish sex differentiation is important both from academic and practical aspects. Foxl2 and Dmrt1 are important transcription factors that should be involved in fish gonadal differentiation, but there is still no direct evidence to clarify their protein functions. Olive flounder Paralichthys olivaceus, an important mariculture fish in China, Japan, and Korea, shows sex-dimorphic growth. In this study, the Foxl2 and Dmrt1 proteins were detected in granulosa cells of the ovary and Sertoli cells of the testis, respectively, showing significant sex-dimorphic expression patterns. Then, bioactive high-purity Foxl2 and Dmrt1 recombinant proteins were obtained in vitro. Furthermore, effects of the recombinant Foxl2 and Dmrt1 during gonadal differentiation period were evaluated by intraperitoneal injection in juvenile fish. Compared with the control group, the male rate in the Dmrt1 group increased from 0 % to 82 %, showing for the first time in fish that the recombinant Dmrt1 could alter the sex phenotype. In addition, transcription levels of cyp19a and its transcription factors also changed after the recombinant Foxl2 and Dmrt1 injection. These findings reveal that Foxl2 and Dmrt1 are vital regulators for fish gonadal differentiation by regulating cyp19a expression, and also provide a new approach for sex control in fish aquaculture.
Collapse
|
7
|
Wang C, Chen X, Dai Y, Zhang Y, Sun Y, Cui X. Comparative transcriptome analysis of heat-induced domesticated zebrafish during gonadal differentiation. BMC Genom Data 2022; 23:39. [PMID: 35641933 PMCID: PMC9158171 DOI: 10.1186/s12863-022-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of environmental factors, especially temperature, on sex ratio is of great significance to elucidate the mechanism of sex determination. However, the molecular mechanisms by which temperature affects sex determination remains unclear, although a few candidate genes have been found to play a role in the process. In this study, we conducted transcriptome analysis of the effects induced by high temperature on zebrafish during gonad differentiation period. RESULTS Totals of 1171, 1022 and 2921 differentially expressed genes (DEGs) between high temperature and normal temperature were identified at 35, 45 and 60 days post-fertilization (dpf) respectively, revealing that heat shock proteins (HSPs) and DNA methyltransferases (DNMTs) were involved in the heat-exposed sex reversal. The Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway that were enriched in individuals after heat treatment included Fanconi anemia (FA) pathway, cell cycle, oocyte meiosis and homologous recombination. CONCLUSIONS Our study provides the results of comparative transcriptome analyses between high temperature and normal temperature, and reveals that the molecular mechanism of heat-induced masculinization in zebrafish is strongly related to the expression of HSPs and DNMTs and FA pathway during gonad differentiation.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuhuai Chen
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yu Dai
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yifei Zhang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yuandong Sun
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiaojuan Cui
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
8
|
Ji X, Bu S, Zhu Y, Wang Y, Wen X, Song F, Luo J. Identification of SF-1 and FOXL2 and Their Effect on Activating P450 Aromatase Transcription via Specific Binding to the Promoter Motifs in Sex Reversing Cheilinus undulatus. Front Endocrinol (Lausanne) 2022; 13:863360. [PMID: 35620392 PMCID: PMC9127060 DOI: 10.3389/fendo.2022.863360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The giant wrasse Cheilinus undulatus is a protogynous socially hermaphroditic fish. However, the physiological basis of its sex reversal remains largely unknown. cyp19 is a key gender-related gene encoding P450 aromatase, which converts androgens to estrogens. cyp19 transcription regulation is currently unknown in socially sexually reversible fish. We identified NR5A1 by encoding SF-1, and FOXL2 from giant wrasse cDNA and cyp19a1a and cyp19a1b promoter regions were cloned from genomic DNA to determine the function of both genes in cyp19a1 regulation. Structural analysis showed that SF-1 contained a conserved DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). FOXL2 was comprised of an evolutionarily conserved Forkhead domain. In vitro transfection assays showed that SF-1 could upregulate cyp19a1 promoter activities, but FOXL2 could only enhance cyp19a1b promoter transcriptional activity in the HEK293T cell line. Furthermore, HEK293T and COS-7 cell lines showed that co-transfecting the two transcription factors significantly increased cyp19a1 promoter activity. The -120 to -112 bp (5'-CAAGGGCAC-3') and -890 to -872 bp (5'-AGAGGAGAACAAGGGGAG-3') regions of the cyp19a1a promoter were the core regulatory elements for SF-1 and FOXL2, respectively, to regulate cyp19a1b promoter transcriptional activity. Collectively, these results suggest that both FOXL2 and SF-1 are involved in giant wrasse sex reversal.
Collapse
|
9
|
Liu Y, Wang W, Liang S, Wang L, Zou Y, Wu Z, Zou C, Wu Q, You F. Sexual dimorphism of DNA and histone methylation profiles in the gonads of the olive flounder Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1341-1352. [PMID: 34264445 DOI: 10.1007/s10695-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
DNA methylation and histone methylation are two types of the most important epigenetic modifications. However, research on their differential expression in gonads of male and female fish is limited. In this study, we examined the characteristics of DNA methylation and tri-methylation of lysine 4 of histone H3 (H3K4me3) modification profiles in the gonads of the wild-type and meio-gynogenetic olive flounders Paralichthys olivaceus. Enzyme-linked immunosorbent assay (ELISA) analysis revealed that the global DNA methylation level was higher in the testis than in the ovary. Real-time quantitative PCR (qPCR) results indicated that maintenance DNA methyltransferase gene dnmt1 and de novo DNA methyltransferase gene dnmt3a are highly expressed in the ovary, while DNA demethyltransferase genes tets are highly expressed in the testis. The inconsistency of DNA methylation and methyltransferase genes in the gonads might associate with the differential distribution in the testis. 5-mC mainly located in the spermatids of the testis was shown with immunohistochemistry (IHC). Furtherly, dnmt3a and tets are mainly located in spermatocytes and oocytes with in situ hybridization (ISH) analysis. As for H3K4me3, total level is higher in the ovary detected with western blot assay. IHC results showed that the signals of H3K4me3 in Sertoli cells of the testis were stronger than those in spermatocytes and spermatids. Methyltransferase gene kmt2b and demethylase genes kdm5a and kdm5c also exhibit much higher expression in the testis with qPCR, and ISH stronger signals of kmt2b and kdm5s were detected in spermatocytes. These results implied that DNA methylation and H3K4me3 are involved in the flounder sex differences and gametogenesis.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaowan Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
10
|
Renn SC, Hurd PL. Epigenetic Regulation and Environmental Sex Determination in Cichlid Fishes. Sex Dev 2021; 15:93-107. [PMID: 34433170 PMCID: PMC8440468 DOI: 10.1159/000517197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Studying environmental sex determination (ESD) in cichlids provides a phylogenetic and comparative approach to understand the evolution of the underlying mechanisms, their impact on the evolution of the overlying systems, and the neuroethology of life history strategies. Natural selection normally favors parents who invest equally in the development of male and female offspring, but evolution may favor deviations from this 50:50 ratio when environmental conditions produce an advantage for doing so. Many species of cichlids demonstrate ESD in response to water chemistry (temperature, pH, and oxygen concentration). The relative strengths of and the exact interactions between these factors vary between congeners, demonstrating genetic variation in sensitivity. The presence of sizable proportions of the less common sex towards the environmental extremes in most species strongly suggests the presence of some genetic sex-determining loci acting in parallel with the ESD factors. Sex determination and differentiation in these species does not seem to result in the organization of a final and irreversible sexual fate, so much as a life-long ongoing battle between competing male- and female-determining genetic and hormonal networks governed by epigenetic factors. We discuss what is and is not known about the epigenetic mechanism behind the differentiation of both gonads and sex differences in the brain. Beyond the well-studied tilapia species, the 2 best-studied dwarf cichlid systems showing ESD are the South American genus Apistogramma and the West African genus Pelvicachromis. Both species demonstrate male morphs with alternative reproductive tactics. We discuss the further neuroethology opportunities such systems provide to the study of epigenetics of alternative life history strategies and other behavioral variation.
Collapse
Affiliation(s)
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CA
- Department of Psychology, University of Alberta, Edmonton, AB, CA
| |
Collapse
|
11
|
Hu Y, Li D, Ma X, Liu R, Qi Y, Yuan C, Huang D. Effects of 2,4-dichlorophenol exposure on zebrafish: Implications for the sex hormone synthesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105868. [PMID: 34051627 DOI: 10.1016/j.aquatox.2021.105868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 μg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization. Then, the sex ratio, the content of vitellogenin (VTG) and sex hormones (androstenedione (ASD), estrone (E1), 17β-estradiol (E2), estriol (E3), testosterone (T) and 11-ketotestosterone (11-KT)) were studied. Furthermore, the expression of genes involved in synthesis of sex hormones (cyp19a1a, cyp19a1b, 17β-hsd, 11β-hsd and cyp11b) along with the DNA methylation in cyp19a1a and cyp19a1b promoters was analyzed. The results showed that 2,4-DCP exposure led to female-biased ratio, increased the content of ASD, E2 and VTG, as well as the ratio of E2/11-KT, while decreased the levels of androgens (T and 11-KT). The sex hormonal change can be explained by the significant up-regulation of cyp19a1a, cyp19a1b, 17β-hsd and 11β-hsd genes. In addition, hypomethylation of cyp19a1a promoter was involved in this process. Notably, fadrozole can partly attenuate 2,4-DCP-induced feminization, and recover the levels of ASD, E2 and 11-KT. Thus, these results demonstrate that 2,4-DCP induces feminization in fish by disrupting the synthesis of sex hormones.
Collapse
Affiliation(s)
- Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Xuan Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Rongjian Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, China.
| |
Collapse
|
12
|
Effects of busulfan on somatic cells after inhibiting germ cells in the gonads of the young olive flounder Paralichthys olivaceus. Anim Reprod Sci 2021; 228:106746. [PMID: 33819898 DOI: 10.1016/j.anireprosci.2021.106746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Busulfan is widely used in some species to inhibit germ cell proliferation. This study was conducted to evaluate effects of busulfan on germ and somatic cells in gonads of olive flounder, Paralichthys olivaceus, one of the most economically important mariculture fish species. After intraperitoneal injection with 80 (80B) or 120 (120B) mg/kg busulfan, both gonads were atrophied, and ovaries were discolored with adhesion to the visceral mass. Histological results indicated that germ cells in the gonads were detached, and there was a larger nucleus size and smaller cytoplasmic volume in spermatogonia. Numbers of oocytes and somatic cells in the ovary were both less (P < 0.05), while in the testis, numbers of spermatogonia and somatic cells were markedly lesser and greater, respectively (P < 0.05). In ovaries of the flounder treated with 80B and 120B, relative abundance of vasa and cyp19a1a mRNA transcripts was very small in the cytoplasm of oocytes, while the cyp19a1a transcript was still present in theca cells. In the testis of flounder treated with 80B and 120B, abundance of vasa was markedly less (P < 0.05) with there being very little vasa in spermatogonia and disruption of the spermatogonium structure. In the 80B treatment group, amh was in lesser abundance with there being very little amh in spermatogonia, however, with the 120B treatment there was a large amh abundance in spermatogonium with there being disruption of structure of these germ cells and Sertoli cells. Busulfan, therefore, might inhibit the development of spermatogonia in the flounder testis.
Collapse
|
13
|
Lin H, Zhou Z, Zhao J, Zhou T, Bai H, Ke Q, Pu F, Zheng W, Xu P. Genome-Wide Association Study Identifies Genomic Loci of Sex Determination and Gonadosomatic Index Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:127-139. [PMID: 33196953 DOI: 10.1007/s10126-020-10007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Larimichthys crocea is one of the traditional marine culture fishes in China, widely distributed in South China Sea, East Sea, and southern Yellow Sea. Sex dimorphism is evident in this species that females present a substantial growth strength than males, suggesting breeding females could obtain more economic benefits in L. crocea aquaculture industry. With the continuous expansion of aquaculture industry, both identifying sex-associated genome region and understanding the genetic basis underlying gonad differentiation and development matter to not only sex control aquaculture but also breeding industry. Thus, genome-wide association analysis (GWAS) of sex determination was conducted with a random breeding population of 905 individuals (including 463 females and 442 males) by ddRAD sequencing. For sex determination, 21 significant single nucleotide polymorphisms (SNPs) in chromosome (Chr) 22 were identified. Surrounding these SNPs, we founded 14 candidate genes, including dmrt1, dmrt3, and piwil2, fam102a, and odf2. The sex-associated region was narrowed down further to 2.4 Mb on Chr22 through Fst scanning and insertion-deletion (InDel) analysis. Besides, 3 SNPs in the supposed sex-determining region on Chr22 were identified as highly associated with gonad differentiation through GWAS on gonadosomatic index (GSI) in 350 males and 231 females. Because of the significant difference of GSI between females and males of L. crocea, GWAS on GSI of different genders was also conducted independently. Finally, we identified a SNP in Chr18 showing genome-wide significant association with male GSI (MGSI) and three genes axl, cyp2a10, and cyp2g1 involved in the gonadal development regulation process of aromatase. Overall, this study explored the genetic basis of sex determination mechanism and provided novel insights into gonad differentiation and development, offering solid genetic support for sex control breeding, marker-assisted selection, and marine resources conservation.
Collapse
Affiliation(s)
- Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
14
|
Huang G, Cao J, Gao F, Liu Z, Lu M, Chen G. R-spondin1 in loach (Misgurnus anguillicaudatus): Identification, characterization, and analysis of its expression patterns and DNA methylation in response to high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110569. [PMID: 33515787 DOI: 10.1016/j.cbpb.2021.110569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/β-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
15
|
Driscoll RMH, Faber-Hammond JJ, O'Rourke CF, Hurd PL, Renn SCP. Epigenetic regulation of gonadal and brain aromatase expression in a cichlid fish with environmental sex determination. Gen Comp Endocrinol 2020; 296:113538. [PMID: 32585214 DOI: 10.1016/j.ygcen.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
A fit animal must develop testes or ovaries, with brain and physiology to match. In species with alternative male morphs this coordination of development across tissues operates within sexes as well as between. For Pelvicachromis pulcher, an African cichlid in which early pH exposure influences both sex and alternative male morph, we sequence both copies of aromatase (cyp19a1), a key gene for sex determination. We analyze gene expression and epigenetic state, comparing gonad and brain tissue from females, alternative male morphs, and fry. Relative to brain, we find elevated expression of the A-copy in the ovaries but not testes. Methylation analysis suggests strong epigenetic regulation, with one region specifying sex and another specifying tissue. We find elevated brain expression of the B-copy with no sex or male morph differences. B-copy methylation follows that of the A-copy rather than corresponding to B-copy expression. In 30-day old fry, we see elevated B-copy expression in the head, but we do not see the expected elevated A-copy expression in the trunk that would reflect ovarian development. Interestingly, the A-copy epialleles that distinguish ovaries from testes are among the most explanatory patterns for variation among fry, suggesting epigenetic marking of sex prior to differentiation and thus laying the groundwork for mechanistic studies of epigenetic regulation of sex and morph differentiation.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, Reed College, Portland, OR, USA; Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA.
| |
Collapse
|
16
|
Fan Z, Zou Y, Liang D, Tan X, Jiao S, Wu Z, Li J, Zhang P, You F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod Fertil Dev 2020; 31:1742-1752. [PMID: 31537253 DOI: 10.1071/rd18233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
As an important maricultured fish, the olive flounder Paralichthys olivaceus shows sex-dimorphic growth. Thus, the molecular mechanisms involved in sex control in P. olivaceus have attracted researchers' attention. Among the sex-related genes, forkhead box protein L2 (foxl2) exhibits significant sex-dimorphic expression patterns and plays an important role in fish gonad differentiation and development. The present study first investigated the expression levels and promoter methylation dynamics of foxl2 during flounder gonad differentiation under treatments of high temperature and exogenous 17β-oestradiol (E2). During high temperature treatment, the expression of flounder foxl2 may be repressed via maintenance of DNA methylation. Then, flounder with differentiated testis at Stages I-II were treated with exogenous 5ppm E2 or 5ppm E2+150ppm trilostane (TR) to investigate whether exogenous sex hormones could induce flounder sex reversal. The differentiated testis exhibited phenotypic variations of gonadal dysgenesis with upregulation of female-related genes (foxl2 and cytochrome P450 family 19 subfamily A (cyp19a)) and downregulation of male-related genes (cytochrome P450 family 11 subfamily B member 2 (cyp11b2), doublesex- and mab-3 related transcription factor 1 (dmrt1), anti-Mullerian hormone (amh) and SRY-box transcription factor 9 (sox9)). Furthermore, a cotransfection assay of the cells of the flounder Sertoli cell line indicated that Foxl2 was able alone or with nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly to upregulate expression of cyp19a. Moreover, Foxl2 and Nr5a2 repressed the expression of dmrt1. In summary, Foxl2 may play an important role in ovarian differentiation by maintaining cyp19a expression and antagonising the expression of dmrt1. However, upregulation of foxl2 is not sufficient to induce the sex reversal of differentiated testis.
Collapse
Affiliation(s)
- Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and Corresponding author.
| |
Collapse
|
17
|
Wang L, Wu Z, Zou C, Liang S, Zou Y, Liu Y, You F. Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder ( Paralichthys olivaceus). Front Cell Dev Biol 2020; 8:751. [PMID: 32850855 PMCID: PMC7419692 DOI: 10.3389/fcell.2020.00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) are two of the most abundant RNA modifications. Here, we examined the characteristics of the RNA editing and transcriptome-wide m6A modification profile in the gonads of the olive flounder, Paralichthys olivaceus, an important maricultured fish in Asia. The gonadal differentiation and development of the flounder are controlled by genetic as well as environmental factors, and the epigenetic mechanism may play an important role. In total, 742 RNA editing events were identified, 459 of which caused A to I conversion. Most A-to-I sites were located in 3′UTRs, while 61 were detected in coding regions (CDs). The number of editing sites in the testis was higher than that in the ovary. Transcriptome-wide analyses showed that more than one-half of the transcribed genes presented an m6A modification in the flounder gonads, and approximately 60% of the differentially expressed genes (DEGs) between the testis and ovary appeared to be negatively correlated with m6A methylation enrichment. Further analyses revealed that the mRNA expression of some sex-related genes (e.g., dmrt1 and amh) in the gonads may be regulated by changes in mRNA m6A enrichment. Functional enrichment analysis indicated that the RNA editing and m6A modifications were enriched in several canonical pathways (e.g., Wnt and MAPK signaling pathways) in fish gonads and in some pathways whose roles have not been investigated in relation to fish sex differentiation and gonadal development (e.g., PPAR and RNA degradation pathways). There were 125 genes that were modified by both A-to-I editing and m6A, but the two types of modifications mostly occurred at different sites. Our results suggested that the presence of sex-specific RNA modifications may be involved in the regulation of gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
18
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
19
|
Singh SK, Das D, Rhen T. Embryonic Temperature Programs Phenotype in Reptiles. Front Physiol 2020; 11:35. [PMID: 32082193 PMCID: PMC7005678 DOI: 10.3389/fphys.2020.00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Reptiles are critically affected by temperature throughout their lifespan, but especially so during early development. Temperature-induced changes in phenotype are a specific example of a broader phenomenon called phenotypic plasticity in which a single individual is able to develop different phenotypes when exposed to different environments. With climate change occurring at an unprecedented rate, it is important to study temperature effects on reptiles. For example, the potential impact of global warming is especially pronounced in species with temperature-dependent sex determination (TSD) because temperature has a direct effect on a key phenotypic (sex) and demographic (population sex ratios) trait. Reptiles with TSD also serve as models for studying temperature effects on the development of other traits that display continuous variation. Temperature directly influences metabolic and developmental rate of embryos and can have permanent effects on phenotype that last beyond the embryonic period. For instance, incubation temperature programs post-hatching hormone production and growth physiology, which can profoundly influence fitness. Here, we review current knowledge of temperature effects on phenotypic and developmental plasticity in reptiles. First, we examine the direct effect of temperature on biophysical processes, the concept of thermal performance curves, and the process of thermal acclimation. After discussing these reversible temperature effects, we focus the bulk of the review on developmental programming of phenotype by temperature during embryogenesis (i.e., permanent developmental effects). We focus on oviparous species because eggs are especially susceptible to changes in ambient temperature. We then discuss recent work probing the role of epigenetic mechanisms in mediating temperature effects on phenotype. Based on phenotypic effects of temperature, we return to the potential impact of global warming on reptiles. Finally, we highlight key areas for future research, including the identification of temperature sensors and assessment of genetic variation for thermosensitivity.
Collapse
Affiliation(s)
| | | | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
20
|
Meng L, Yu H, Qu J, Niu J, Ni F, Han P, Yu H, Wang X. Two cyp17 genes perform different functions in the sex hormone biosynthesis and gonadal differentiation in Japanese flounder (Paralichthys olivaceus). Gene 2019; 702:17-26. [PMID: 30898704 DOI: 10.1016/j.gene.2019.02.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
P450c17, a key enzyme in the steroid generation pathway, plays an important role in the production of sex steroid and cortisol. In this study, two cyp17 gene isoforms, Pocyp17-I and Pocyp17-II were isolated from Paralichthys olivaceus gonads. Domain architecture analysis of Pocyp17-I and Pocyp17-II revealed that they had three regions important to enzymatic function. Structural analysis showed that Pocyp17-I and Pocyp17-II had 8 and 9 exons respectively, and the difference was caused by the insertion of an extra intron (intron1) in the latter. Quantitative real-time polymerase chain reaction results indicated that the expression of these two genes showed sexually dimorphism that Pocyp17-I and Pocyp17-II were highest expressed in testis and ovary, respectively. The in situ hybridization analysis of gonads indicated that Pocyp17-I and Pocyp17-II mRNA were both detected in oocytes, spermatocytes and Sertoli cells. After injection of androgen and estrogen (17α-methyltestosterone, 17β-estradiol) of different concentrations, the expression level of Pocyp17-I decreased significantly (P < 0.01), whereas estrogen had no influence on Pocyp17-II, but androgen upregulated the expression of Pocyp17-II (P < 0.05). Moreover, Pocyp17-I expression level was down-regulated significantly by NR0b1 but up-regulated by NR5a2 (P < 0.05), whereas Pocyp17-II expression level was down-regulated significantly by NR0b1 and NR5a2 (P < 0.05). All these results demonstrated that there were differences in expression patterns, feedback actions of sex hormones and transcriptional regulations between cyp17-I and cyp17-II, which revealed that cyp17-I and cyp17-II might perform different functions in sex hormones biosynthesis and gonadal differentiation in Japanese flounder.
Collapse
Affiliation(s)
- Lihui Meng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jingjing Niu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
21
|
Liu J, Liu X, Jin C, Du X, He Y, Zhang Q. Transcriptome Profiling Insights the Feature of Sex Reversal Induced by High Temperature in Tongue Sole Cynoglossus semilaevis. Front Genet 2019; 10:522. [PMID: 31191622 PMCID: PMC6548826 DOI: 10.3389/fgene.2019.00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Sex reversal induced by temperature change is a common feature in fish. Usually, the sex ratio shift occurs when temperature deviates too much from normal during embryogenesis or sex differentiation stages. Despite decades of work, the mechanism of how temperature functions during early development and sex reversal remains mysterious. In this study, we used Chinese tongue sole as a model to identify features from gonad transcriptomic and epigenetic mechanisms involved in temperature induced masculinization. Some of genetic females reversed to pseudomales after high temperature treatment which caused the sex ratio imbalance. RNA-seq data showed that the expression profiles of females and males were significantly different, and set of genes showed sexually dimorphic expression. The general transcriptomic feature of pesudomales was similar with males, but the genes involved in spermatogenesis and energy metabolism were differentially expressed. In gonads, the methylation level of cyp19a1a promoter was higher in females than in males and pseudomales. Furthermore, high-temperature treatment increased the cyp19a1a promoter methylation levels of females. We observed a significant negative correlation between methylation levels and expression of cyp19ala. In vitro study showed that CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated, and DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. These results suggested that epigenetic change, i.e., DNA methylation, which regulate the expression of cyp19a1a might be the mechanism for the temperature induced masculinization in tongue sole. It may be a common mechanism in teleost that can be induced sex reversal by temperature.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Liang HW, Meng Y, Cao LH, Li X, Zou GW. Expression and characterization of the cyp19a gene and its responses to estradiol/letrozole exposure in Chinese soft-shelled turtle (Pelodiscus sinensis). Mol Reprod Dev 2019; 86:480-490. [PMID: 30779247 DOI: 10.1002/mrd.23126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/21/2023]
Abstract
Cytochrome P450 aromatase (CYP19) catalyzes the conversion of androgens to estrogens and is critical in sex differentiation. CYP19 exists as the ovarian type and brain type. Herein, we cloned the full-length ovarian cyp19a gene from the Chinese soft-shelled turtle, Pelodiscus sinensis (pscyp19a). We determined the distribution of pscyp19a in adult tissue and evaluated its expression during embryonic development, following treatment with 17β-estradiol (E2) or letrozole (LE). The pscyp19a complementary DNA is 2,285 bp in length and comprises a 1,512 bp open reading frame that encodes a protein of 503 AA. The nucleotide sequence and amino acid of pscyp19a shared significant identity with other vertebrate sequences. Expression of pscyp19a was high in the ovary (p < 0.01), and exhibited modest expression in the female brain and intestine. Expression of pscyp19a displayed significant differences between sexes during early embryo development stages; expression increased gradually during embryonic development in females, but the opposite trend was observed in males. Female embryos treated with different concentrations of E2 and LE displayed altered pscyp19a expression compared with untreated individuals, and E2 clearly induced pscyp19a expression. These results indicate that pscyp19a gene plays important roles in early developmental stages in Chinese soft-shelled turtle, and may assist future studies on sex differentiation and sex control in this and similar species.
Collapse
Affiliation(s)
- Hong W Liang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Hubei, China.,Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Yan Meng
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Li H Cao
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Xiang Li
- Anhui Xijia Agricultural Development Co. Ltd, Anhui, China
| | - Gui W Zou
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| |
Collapse
|
23
|
Zou Y, Peng L, Weng S, Liang D, Fan Z, Wu Z, Tan X, Jiao S, You F. Characterization and expression of androgen receptors in olive flounder. Gene 2019; 683:184-194. [PMID: 30315925 DOI: 10.1016/j.gene.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Androgens are critical hormones that regulate sex differentiation, sexual maturation, and spermatogenesis in vertebrates, which is mainly mediated by androgen receptors (ARs). Reports on transcript variants of ar (AR encoding gene) in human are almost always associated with cancers and androgen insensitivity syndrome. However, the knowledge of ar variants in teleosts is scarce. In this study, arβ and two transcript variants of arα (arα1 and arα2) in olive flounder (Paralichthys olivaceus) were cloned and analyzed. Their expression patterns were investigated in 16 adult female and male tissues by RT-PCR, respectively. arα1 was expressed in the majority of tissues excluding male liver, medulla oblongata and female cerebellum, with higher levels in male gonad, kidney, head kidney, intestine, stomach, spleen, heart and gill than in female. arα2 had similar expression patterns as arα1, with lower levels in general. arβ was also widely expressed in various tissues excluding male spleen, female spleen and gill, with higher levels in male gonad, kidney, head kidney, intestine and lower levels in hypothalamus than in female. Compared with arβ, much lower expression levels of arα1 and arα2 were detected in different brain areas. The real-time quantitative PCR (qPCR) results showed that the total arα expression level was relatively higher during olive flounder gonadal differentiation and before the onset of testis differentiation, whereas arβ was expressed significantly higher during male gonadal differentiation period than female gonadal differentiation period. The in vitro transient transfection assays showed that ARα1, ARα2 and ARβ could all suppress the activity of cyp19a (p450arom aromatase gene) promoter, and the inhibitory effect of ARα1 was dose dependent. Our results imply that arα1, arα2 and arβ are sex-related genes and they might play important roles in gonadal differentiation in flounder.
Collapse
Affiliation(s)
- Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Limin Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
| |
Collapse
|
24
|
Dynamic alterations in methylation of global DNA and growth-related genes in large yellow croaker (Larimichthys crocea) in response to starvation stress. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:98-105. [DOI: 10.1016/j.cbpb.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
|
25
|
Liang D, Fan Z, Zou Y, Tan X, Wu Z, Jiao S, Li J, Zhang P, You F. Characteristics of Cyp11a during Gonad Differentiation of the Olive Flounder Paralichthys olivaceus. Int J Mol Sci 2018; 19:ijms19092641. [PMID: 30200601 PMCID: PMC6164156 DOI: 10.3390/ijms19092641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/23/2022] Open
Abstract
The P450 side-chain cleavage enzyme, P450scc (Cyp11a) catalyzes the first enzymatic step for the synthesis of all steroid hormones in fish. To study its roles in gonads of the olive flounder Paralichthys olivaceus, an important maricultured fish species, we isolated the cyp11a genomic DNA sequence of 1396 bp, which consists of 5 exons and 4 introns. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) results indicated that the flounder cyp11a was exclusively expressed in gonad and head kidney tissues. Its expression level in the testis was higher than that in the ovary. According to the in situ hybridization patterns, cyp11a was mainly expressed in the Leydig cells of the testis, and the thecal cells of the ovary. Immunofluorescence analysis showed that Cyp11a was located in the cytoplasm of the cultured flounder testis cells. Further quantitative real-time PCR results presented the cyp11a differential expression patterns during gonad differentiation. Among different sampling points of the 17β-estradiol (E2, 5 ppm) treatment group, cyp11a expression levels were relatively high in the differentiating ovary (30 and 40 mm total length, TL), and then significantly decreased in the differentiated ovary (80, 100 and 120 mm TL, p < 0.05). The pregnenolone level also dropped in the differentiated ovary. In the high temperature treatment group (HT group, 28 ± 0.5 °C), the cyp11a expression level fluctuated remarkably in the differentiating testis (60 mm TL), and then decreased in the differentiated testis (80, 100 mm TL, p < 0.05). In the testosterone (T, 5 ppm) treatment group, the cyp11a was expressed highly in undifferentiated gonads and the differentiating testis, and then dropped in the differentiated testis. Moreover, the levels of cholesterol and pregnenolone of the differentiating testis in the HT and T groups increased. The expression level of cyp11a was significantly down-regulated after the cultured flounder testis cells were treated with 75 and 150 μM cyclic adenosine monophosphate (cAMP), respectively (p < 0.05), and significantly up-regulated after treatment with 300 μM cAMP (p < 0.05). Both nuclear receptors NR5a2 and NR0b1 could significantly up-regulate the cyp11a gene expression in a dosage dependent way in the testis cells detected by cell transfection analysis (p < 0.05). The above data provides evidence that cyp11a would be involved in the flounder gonad differentiation and development.
Collapse
Affiliation(s)
- Dongdong Liang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
26
|
Chen X, He Y, Wang Z, Li J. Expression and DNA methylation analysis of cyp19a1a in Chinese sea perch Lateolabrax maculatus. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:85-90. [PMID: 30099195 DOI: 10.1016/j.cbpb.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 aromatase (P450arom), which is encoded by cyp19a1a, can convert androgen to estrogen. Therefore, P450arom is important in gonadal differentiation and maintenance. In this study, we analyzed the expression and DNA methylation of cyp19a from Chinese sea perch Lateolabrax maculatus (sp. cyp19a1a). The sp. cyp19a1a gene consists of 9 exons, but only 3.5 kb, being smaller than the human cyp19a1a, as a result of small introns. The sp. cyp19a1a protein contains 518 amino acid residues and evolutionarily conserved domains and is clustered in the teleost subfamily on the phylogenetic tree. Amino acid alignment indicates that sp. cyp19a1a shares the highest identity (91.6%) to Epinephelus akaara and Lates calcarifer. Endogenous sp. cyp19a1a is detected mainly in stromal cells around the oocytes of stage I ovary, and the gene expression level has no difference after 40 days fresh water culture in both ovary and testis. The sp. Cyp19a1a can catalyze the production of estrogen from androgen in vitro. Seven CpG dinucleotides are found in the proximal promoter. Binding sites of the conserved predicted transcription factors include cAMP response element, steroidogenic factor-1, and SRY-Box. The deletion of this region reduces promoter activity significantly. The methylation level of the seven CpG dinucleotides in cyp19a1a promoter is higher in the testis (44.25 ± 4.04) than in the ovary (24.71 ± 3.05). The induced hypermethylation of the sp. cyp19a1a promoter suppressed promoter transcription function in vitro. These results suggest that DNA methylation may be a mechanism used for natural sex maintenance.
Collapse
Affiliation(s)
- Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
| | - Yudong He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhipeng Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 26000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 26000, China.
| |
Collapse
|
27
|
Liang D, Fan Z, Weng S, Jiao S, Wu Z, Zou Y, Tan X, Li J, Zhang P, You F. Characterization and expression of StAR2a and StAR2b in the olive flounder Paralichthys olivaceus. Gene 2017; 626:1-8. [PMID: 28479382 DOI: 10.1016/j.gene.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 02/03/2023]
Abstract
Steroidogenic acute regulatory protein 2 (StAR2) is a key protein in transporting cholesterol from the outer mitochondria membrane to the inner mitochondria membrane for sex steroid synthesis. In this study, two StAR2 gene isoforms, StAR2a and StAR2b, were isolated from the olive flounder Paralichthys olivaceus gonads. Semi-quantitative RT-PCR results indicated that their expression levels were higher in testis than those in ovary. StAR2a was mainly expressed in the thecal cells and ooplasm of ovary, and Leydig cells and spermatid of testis according to the results of in situ hybridization. The quantitative real-time PCR results showed that the expressions of StAR2a and StAR2b were high in undifferentiation gonads and differentiating testis, and then decreased in differentiated testis in the high temperature (28°C) and exogenous testosterone treatment groups. While, in the exogenous 17β-estradiol treatment group, both genes' expression levels were high in differentiating ovary, and then significantly decreased in differentiated ovary (P<0.05). StAR2a and StAR2b expression levels were significantly down-regulated in the cultured testis cells treated with the 75 and 150μM cAMP, but significantly up-regulated in the cultured testis cells treated with the 300μM cAMP (P<0.05). Moreover, their expression levels were significantly up-regulated by transfecting the cultured testis cells with pcDNA3.1-NR5a2 and pcDNA3.1-NR0b1 (P<0.05). Above study showed that expression of StAR2 was regulated by cAMP and the transcription factors, NR5a2 and NR0b1, indicating that StAR2 may have functions in flounder gonadal differentiation and maintenance.
Collapse
Affiliation(s)
- Dongdong Liang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|