1
|
Esbaugh AJ. Physiological responses of euryhaline marine fish to naturally-occurring hypersalinity. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111768. [PMID: 39454936 DOI: 10.1016/j.cbpa.2024.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Hypersaline habitats are generally defined as those with salinities in excess of 40 ppt. Well-known hypersaline regions (e.g. salt and soda lakes) have a well-earned reputation for being among the most inhospitable habitats in the world, and fish endemic to these areas have been the subject of much research related to extremophile physiology. Yet, marine coastal hypersalinity is both a common occurrence and a growing consideration in many marine coastal ecosystems, in part owing to human influence (e.g. evaporation, river diversion, desalination effluent). Importantly, any increase in salinity will elevate the osmoregulatory challenges experienced by a fish, which must be overcome by increasing the capacity to imbibe and absorb water and excrete ions. While great attention has been given to dynamic osmoregulatory processes with respect to freshwater to seawater transitions, and to the extreme hypersalinity tolerance that is associated with the adoption of an osmo-conforming strategy, relatively little focus has been placed on the physiological implications of moderate hypersalinity exposures (e.g. ≤ 60 ppt). Importantly, these exposures often represent the threshold of osmoregulatory performance owing to energetic constraints on ion excretion and efficiency limitations on water absorption. This review will explore the current state of knowledge with respect to hypersalinity exposure in euryhaline fishes, while placing a particular focus on the physiological constraints, plasticity and downstream implications of long-term exposure to moderate hypersalinity.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Department of Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
2
|
Walther BD, Torrance LE. Quantifying euryhaline histories in red drum Sciaenops ocellatus: otolith chemistry and muscle isotope ratios. JOURNAL OF FISH BIOLOGY 2024; 105:1389-1405. [PMID: 35866883 DOI: 10.1111/jfb.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The combined use of otolith chemistry and tissue isotopes has the potential to reveal movements, habitat associations and food web interactions at a variety of spatial and temporal scales. Here, a combination of otolith Ba:Ca life-history transects with muscle tissue δ13C and δ15N values has been used to assess habitat use and oligohaline residence in red drum Sciaenops ocellatus in subtropical estuaries in the north-western Gulf of Mexico. Tissue isotopes were distinct among capture locations, particularly between bays with differing proximities to freshwater inflow sources. Otolith edge Ba:Ca values and tissue δ13C values were not correlated. These results indicated that fish were neither residing in nor feeding in oligohaline waters for significant periods of time within the tissue turnover window of several months prior to capture. Nonetheless, spatial differences in tissue isotope values indicated limited mixing among bays and relatively high site fidelity during estuarine occupancy. Lifetime otolith Ba:Ca transects revealed individual variability in the magnitude of residence in oligohaline waters. Using a mean oligohaline occupancy threshold, an estimated 82% of individuals used oligohaline waters at some point in their life. Nonetheless, 66% of individuals spent <20% of their life histories in oligohaline waters, suggesting intermittent and infrequent excursions into low salinity waters. Finally, a literature survey identified 56 peer-reviewed publications using combinations of otolith chemistry and tissue stable isotope ratios with a wide range of marker pairings and study aims. The diversity of ecological questions that can be asked with the combined use of these two approaches will provide valuable insight into fish ecology.
Collapse
Affiliation(s)
- Benjamin D Walther
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Louisa E Torrance
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- State Parks Division, Texas Parks and Wildlife Department, Austin, Texas, USA
| |
Collapse
|
3
|
Ackerly KL, Negrete B, Dichiera AM, Esbaugh AJ. Hypoxia acclimation improves mitochondrial efficiency in the aerobic swimming muscle of red drum (Sciaenops ocellatus). Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111443. [PMID: 37201653 DOI: 10.1016/j.cbpa.2023.111443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Environmental hypoxia (low dissolved oxygen) is a significant threat facing fishes. As fishes require oxygen to efficiently produce ATP, hypoxia can significantly limit aerobic capacity. However, some fishes show respiratory flexibility that rescues aerobic performance, including plasticity in mitochondrial performance. This plasticity may result in increased mitochondrial efficiency (e.g., less proton leak), increased oxygen storage capacity (increased myoglobin), and oxidative capacity (e.g., higher citrate synthase activity) under hypoxia. We acclimated a hypoxia-tolerant fish, red drum (Sciaenops ocellatus), to 8-days of constant hypoxia to induce a hypoxic phenotype. Fish were terminally sampled for cardiac and red muscle tissue to quantify oxidative phosphorylation, proton leak, and maximum respiration in tissue from both hypoxia-acclimated and control fish. Tissue was also collected to assess the plasticity of citrate synthase enzyme activity and mRNA expression for select oxygen storage and antioxidant pathway transcripts. We found that mitochondrial respiration rates were not affected by hypoxia exposure in cardiac tissue, though citrate synthase activity and myoglobin expression were higher following hypoxia acclimation. Interestingly, measures of mitochondrial efficiency in red muscle significantly improved in hypoxia-acclimated individuals. Hypoxia-acclimated fish had significantly higher OXPHOS Control Efficiency, OXPHOS Capacity and Coupling Control Ratios (i.e., LEAK/OXPHOS). There was no significant change to citrate synthase activity or myoglobin expression in red muscle. Overall, these results suggest that red muscle mitochondria of hypoxia-acclimated fish more efficiently utilize oxygen, which may explain previous reports in red drum of improved aerobic swimming performance in the absence of improved maximum metabolic rate following hypoxia acclimation.
Collapse
Affiliation(s)
- Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| | - Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
4
|
Sun B, Li J, Hu C, Giesy JP, Lam PKS, Chen L. Toxicity of perfluorobutanesulfonate on gill functions of marine medaka (Oryzias melastigma): A time course and hypoxia co-exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162297. [PMID: 36801345 DOI: 10.1016/j.scitotenv.2023.162297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is found in hypoxia regions. Results of previous studies have shown that hypoxia was capable of altering the inherent toxicity of PFBS. However, regarding gill functions, hypoxic influences and time course progression of toxic effects of PFBS remain unclear. In this study, with the aim to reveal the interaction behavior between PFBS and hypoxia, adult marine medaka Oryzias melastigma were exposed for 7 days to 0 or 10 μg PFBS/L under normoxic or hypoxic conditions. Subsequently, to explore the time-course transition in gill toxicity, medaka were exposed to PFBS for 21 days. The results showed that hypoxia dramatically increased the respiratory rate of medaka gill, which was further enhanced by exposure to PFBS; although exposure to PFBS under normoxic conditions for 7 days did not alter respiration, exposure to PFBS for 21 days significantly accelerated the respiration rate of female medaka. Concurrently, both hypoxia and PFBS were potent to interrupt the gene transcriptions and Na+, K+-ATPase enzymatic activity that play pivotal roles in the osmoregulation in gills of marine medaka, consequently disrupting homeostasis of major ions in blood, such as Na+, Cl-, and Ca2+. In addition, composition and diversity of the microbiome residing on surfaces of the gill were profiled by using amplicon sequencing. Acute exposure to hypoxia for only 7 days caused a significant decrease in diversity of the bacterial community of gill whatever the presence of PFBS, while PFBS exposure for 21 days increased the diversity of gill microbial community. Principal component analysis revealed that, compared with PFBS, hypoxia was the predominant driver of gill microbiome dysbiosis. Depending on duration of exposure, a divergence was caused in the microbial community of gill. Overall, the current findings underline the interaction between hypoxia and PFBS on gill function and demonstrate the temporal variation in PFBS toxicity.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Dourado PLR, Lima D, Mattos JJ, Bainy ACD, Grott SC, Alves TC, de Almeida EA, da Silva DGH. Fipronil impairs the GABAergic brain responses of Nile Tilapia during the transition from normoxia to acute hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:138-152. [PMID: 36216792 DOI: 10.1002/jez.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
γ-aminobutyric acid (GABA) is one of the main neurotransmitters involved in the adaptation processes against the damage that hypoxia can cause to the brain. Due to its antagonist action on GABA receptors, the insecticide fipronil can turn the fish more susceptible to the negative effects of hypoxia. This study aimed to understand better if fipronil affects these GABAergic responses of Tilapia ahead to hypoxia. Oreochromis Niloticus (Nile Tilapia) were exposed for 3 and 8 h to fipronil (0.0, 0.1, and 0.5 µg.L-1 ) under normoxia (dissolved O2 > 6 mg.L-1 ) and moderate hypoxia (dissolved O2 < 2 mg.L-1 ) conditions. Briefly, hypoxia caused opposite effects on the gene transcription of the evaluated ionotropic and metabotropic GABA receptors. Unexpectedly, we obtained reduced HIF1A mRNA and brain GABA levels, mostly in the first 3 h of the experiment, for the hypoxic group compared with the normoxia one. Besides that, we also demonstrated that the insecticide fipronil impairs the brain GABAergic signaling of a hypoxia-tolerant fish during the transition from a normoxic to an acute hypoxic state. Thus, these results predict the relevant impact on the brain metabolic adaptations of fishes exposed to such stressful conditions in an aquatic environment, as well as the effects of fipronil in the GABAergic responses to hypoxia, which in turn may have ecological and physiological significance to hypoxia-tolerant fishes exposed to this insecticide.
Collapse
Affiliation(s)
- Priscila L R Dourado
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Daína Lima
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso C D Bainy
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Suelen C Grott
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Danilo G Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil
| |
Collapse
|
6
|
Martin L, Negrete B, Esbaugh AJ. The effects of size on exhaustive exercise and recovery in a marine sportfish, the red drum (Sciaenops ocellatus). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110844. [PMID: 36828190 DOI: 10.1016/j.cbpb.2023.110844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Recreational angling is an economically important activity in many communities around the world. One conservation strategy adopted to offset the population-level consequences of recreational angling is "catch-and-release" (CAR), which is the act of returning fish to the environment following an angling event. While an expansive literature has helped to generalize CAR best practices, species-specific validation of recovery profiles remains a crucial component of species-specific angling guidance. This study sought to define the injury and recovery profiles in the plasma and white muscle following exhaustive exercise in two size classes of a common Gulf of Mexico sportfish, the red drum (Sciaenops ocellatus). The two sizes included a "small" (20-30 cm) and "slot" size (51-74 cm), the latter of which is a common angling target. Both size classes showed a characteristic injury profile that consisted of significantly elevated muscle and plasma lactate, plasma osmolality and haematocrit, as well as decreased muscle ATP and phosphocreatine, and lowered plasma and muscle pH. In small fish, muscle metabolites returned to control values by 1 h post-exercise and plasma metabolites returned to control between 3 and 6 h post-exercise. In contrast, slot sized fish had recovery periods of ≥3 h for all metabolites. The maximum injury effect size was also greater in the slot size class. These data suggest that while red drum conform to typical patterns of post-exercise recovery, larger trophy-sized fish may be more at risk to the ancillary effects of exhaustive exercise owing to greater exercise injury and slower recovery rates.
Collapse
Affiliation(s)
- Leighann Martin
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| |
Collapse
|
7
|
Negrete B, Ackerly KL, Dichiera AM, Esbaugh AJ. Respiratory plasticity improves aerobic performance in hypoxia in a marine teleost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157880. [PMID: 35944637 DOI: 10.1016/j.scitotenv.2022.157880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Ocean deoxygenation is a pressing concern in the face of climate change. In response to prolonged hypoxia, fishes have demonstrated the ability to dynamically regulate hemoglobin (Hb) expression to enhance oxygen (O2) uptake. Here, we examined hypoxia-inducible Hb expression in red drum (Sciaenops ocellatus) and the subsequent implications on Hb-O2 binding affinity and aerobic scope. Fish were acclimated to 30 % air saturation for 1 d, 4 d, 8 d, 2 w, or 6 w, and red blood cells were collected for gene expression and biochemical profiling. Hypoxia acclimation induced significant up-regulation of one Hb subunit isoform (hbα 2) relative to control by 4 d with consistent upregulation thereafter. Hematocrit increased in hypoxia, with no changes in the allosteric modulator [NTP] at any time point. Changes in Hb expression co-occurred with a reduced Root effect (~26 % in normoxia, ~14 % in hypoxia) at a physiologically relevant pH while increasing O2 binding affinity (i.e., lower P50). These changes correlated with increased maximum metabolic rate and aerobic scope relative to controls when fish were tested in hypoxia. These results demonstrate an important role for Hb multiplicity in improving O2 affinity and maximizing respiratory performance in hypoxia.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
8
|
Bonatesta F, Khursigara AJ, Ackerly KL, Esbaugh AJ, Mager EM. Early life-stage Deepwater Horizon crude oil exposure induces latent osmoregulatory defects in larval red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109405. [PMID: 35811062 DOI: 10.1016/j.cbpc.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill. To address this knowledge gap, an acute 72 h exposure to red drum (Sciaenops ocellatus) larvae was performed using high-energy water-accommodated fractions (HEWAFs) of DWH weathered oil to analyze transcriptional changes in genes involved in pronephros development and function by quantitative PCR. To test the latent effects of oil exposure on osmoregulation ability, red drum larvae were first exposed to HEWAF for 24 h. Larvae were then reared in clean seawater for two weeks and a 96 h acute osmotic challenge test was performed by exposing the fish to waters with varying salinities. Latent effects of ELS crude oil exposure on osmoregulation were assessed by quantifying survival during the acute osmotic challenge test and analyzing transcriptional changes at 14 dpf. Results demonstrated that ELS crude oil exposure reduced survival of red drum larvae when challenged in hypoosmotic waters and that latent transcriptional changes in some target pronephric genes were evident, indicating that an affected kidney likely contributed to the increased mortality.
Collapse
Affiliation(s)
- Fabrizio Bonatesta
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA.
| | - Alexis J Khursigara
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Kerri L Ackerly
- Department of Marine Sciences, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Andrew J Esbaugh
- Department of Marine Sciences, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Edward M Mager
- Department of Biological Sciences and the Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
9
|
Li P, Liu W, Lu W, Wang J. Biochemical indices, gene expression, and SNPs associated with salinity adaptation in juvenile chum salmon ( Oncorhynchus keta) as determined by comparative transcriptome analysis. PeerJ 2022; 10:e13585. [PMID: 36117540 PMCID: PMC9477081 DOI: 10.7717/peerj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur developmental, physiological and molecular adaptations as the salinity changes. The molecular regulation for salinity adaptation in chum salmon is currently not well defined. In this study, 1-g salmon were cultured under 0 (control group, D0), 8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then decreased in response to higher salinity environments where D8 exhibited the highest Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest. Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups relative to controls, while no significant difference in acid phosphatase (ACP) activity was observed across treatment groups. De novo transcriptome sequencing in the D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of which 2,143 were differentially expressed in response to environmental salinity (71 up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide polymorphisms (SNPs) were also identified. The growth, development, osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas) expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR. The lowest expression of all these genes occurred in the low salinity environments (D8 or D16), while their highest expression occurred in the high salinity environments (D24). These results provide preliminary insight into salinity adaptation in chum salmon and a foundation for the development of marker-assisted breeding for this species.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
10
|
Dawood MAO, Noreldin AE, Sewilam H. Blood biochemical variables, antioxidative status, and histological features of intestinal, gill, and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56357-56369. [PMID: 35338459 PMCID: PMC9374635 DOI: 10.1007/s11356-022-19702-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/09/2022] [Indexed: 05/05/2023]
Abstract
African catfish is a freshwater species with a high ability to resist brackish water conditions, but heat stress may impair the health status of fish. Thus, the impact of varying levels of water salinity (0, 4, 8, and 12 ppt) was investigated on the growth performance, survival rate, and blood biochemistry of African catfish (average weight: 180.58 ± 2.8 g and average length: 38 ± 1.2 cm) for 4 weeks; then, fish were stressed with high temperature (32 °C) for 72 h. The growth performance and survival rate were markedly higher in fish reared in 0, 4, and 8 ppt than fish in 12 ppt (p < 0.05). Before heat stress, the superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) levels were markedly increased in fish stressed with 12-ppt salinity (p < 0.05). After heat stress, all groups showed a marked increased SOD, CAT, GSH, and MDA levels than fish before heat stress in the same manner (p < 0.05). Furthermore, fish in the 12 ppt group showed severe intestinal, gill, and liver histological features. The levels of blood glucose and cortisol were markedly increased in fish exposed with 8 and 12 ppt than 0 ppt gradually either before or after heat stress (p < 0.05). The highest values of ALT, AST, urea, creatinine, and the lowest total protein, albumin, and globulin were observed in fish reared in 12 ppt. Significant salinity and heat stress interactions were seen on the ALT, AST, urea, creatinine, total protein, albumin, and globulin values (p < 0.05). The integrated multi-biomarker response (IBR) results showed marked differences among the groups and increased gradually before and after heat stress, with the highest IBR in 12 ppt. In conclusion, growing African catfish in high salinity (12 ppt) hampered the growth performance and health status while the heat stress improved the antioxidative status vis-a-vis increased lipid peroxidation along with higher stress-related markers in expressed both blood and tissue.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Cañizares-Martínez MA, Quintanilla-Mena M, Del-Río-García M, Rivas-Reyes I, Patiño-Suárez MV, Vidal-Martínez VM, Aguirre-Macedo ML, Puch-Hau CA. Acute Exposure to Crude Oil Induces Epigenetic, Transcriptional and Metabolic Changes in Juvenile Sciaenops ocellatus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:85-92. [PMID: 33914098 DOI: 10.1007/s00128-021-03241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, we report molecular and metabolic responses of Sciaenops ocellatus during an acute oil exposure bioassay (100, 800 and 8000 mg 1-1 of crude oil). The global DNA methylation and expression profiles of key genes of the xenobiotic biotransformation system (cytochrome P450 1A [cyp1a] and glutathione S-tranferase [gst]), oxidative stress system (glutathione peroxidase [gpx], catalase [cat], aldehyde dehydrogenase [aldh]) and reproductive system (vitellogenin [vtg]) were evaluated. At the metabolic level, we evaluated the concentration of four polycyclic aromatic hydrocarbon (PAH) metabolites -hydroxybenzo[a]pyrene, hydroxypyrene, hydroxynaphthalene and hydroxyphenanthrene- in fish bile. The results of this study revealed that fish exposed to crude oil exhibited hypomethylation of DNA, up-regulation of cyp1a and gst and down-regulation of gpx, cat, aldh and vtg and high concentrations of PAH metabolites with respect to the control.
Collapse
Affiliation(s)
- Mayra A Cañizares-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Mercedes Quintanilla-Mena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Marcela Del-Río-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Isajav Rivas-Reyes
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - María V Patiño-Suárez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Victor M Vidal-Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - M Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Carlos A Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
12
|
The influence of hypoxia on the cardiac transcriptomes of two estuarine species - C. variegatus and F. grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100837. [PMID: 33892309 DOI: 10.1016/j.cbd.2021.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development. While these impacts have been addressed at the functional level, there is little information regarding the molecular basis for these changes. This study used transcriptomic analysis techniques to interrogate the effects of hypoxia exposure on the developing cardiovascular system in newly hatched larvae of two estuarine species that occupy the same ecological niche - the sheepshead minnow (Cyprinodon variegatus) and the Gulf killifish (Fundulus grandis). Results suggest that while differential gene expression is largely distinct between the two species, downstream impacts on pathways and functional responses such as reduced cardiac hypertrophy, modulation of blood pressure, and increased incidence of apoptosis appear to be conserved. Further, differences in the magnitude of these conserved responses may suggest that the length of embryonic development could impart a level of resiliency to hypoxic perturbation in early life stage fish.
Collapse
|
13
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
14
|
Verhille CE, Dabruzzi TF, Cocherell DE, Mahardja B, Feyrer F, Foin TC, Baerwald MR, Fangue NA. Inter-population differences in salinity tolerance of adult wild Sacramento splittail: osmoregulatory and metabolic responses to salinity. CONSERVATION PHYSIOLOGY 2020; 8:coaa098. [PMID: 33343901 PMCID: PMC7733400 DOI: 10.1093/conphys/coaa098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The Sacramento splittail (Pogonichthys macrolepidotus) is composed of two genetically distinct populations endemic to the San Francisco Estuary (SFE). The allopatric upstream spawning habitat of the Central Valley (CV) population connects with the sympatric rearing grounds via relatively low salinity waters, whereas the San Pablo (SP) population must pass through the relatively high-salinity Upper SFE to reach its allopatric downstream spawning habitat. We hypothesize that if migration through SFE salinities to SP spawning grounds is more challenging for adult CV than SP splittail, then salinity tolerance, osmoregulatory capacity, and metabolic responses to salinity will differ between populations. Osmoregulatory disturbances, assessed by measuring plasma osmolality and ions, muscle moisture and Na+-K+-ATPase activity after 168 to 336 h at 11‰ salinity, showed evidence for a more robust osmoregulatory capacity in adult SP relative to CV splittail. While both resting and maximum metabolic rates were elevated in SP splittail in response to increased salinity, CV splittail metabolic rates were unaffected by salinity. Further, the calculated difference between resting and maximum metabolic values, aerobic scope, did not differ significantly between populations. Therefore, improved osmoregulation came at a metabolic cost for SP splittail but was not associated with negative impacts on scope for aerobic metabolism. These results suggest that SP splittail may be physiologically adjusted to allow for migration through higher-salinity waters. The trends in interpopulation variation in osmoregulatory and metabolic responses to salinity exposures support our hypothesis of greater salinity-related challenges to adult CV than SP splittail migration and are consistent with our previous findings for juvenile splittail populations, further supporting our recommendation of population-specific management.
Collapse
Affiliation(s)
- Christine E Verhille
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
- Department of Ecology, Montana State University, 310 Lewis Hall ,Bozeman, MT 59717, USA
| | - Theresa F Dabruzzi
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
- Biology Department, Saint Anselm College, 100 Saint Anselm Drive, Manchester, NH 03102, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Brian Mahardja
- United States Fish and Wildlife Service, Department of the Interior, Delta Juvenile Fish Monitoring Program, 850 South Guild Ave, Suite 105, Lodi, CA, USA
| | - Fred Feyrer
- California Water Science Center, U.S. Geological Survey, 6000 J St., Sacramento, CA 95819-6129, USA
| | - Theodore C Foin
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Melinda R Baerwald
- Division of Environmental Services, California Department of Water Resources, 3500 Industrial Boulevard, West Sacramento, CA 95691, USA
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
15
|
Negrete B, Esbaugh AJ. A methodological evaluation of the determination of critical oxygen threshold in an estuarine teleost. Biol Open 2019; 8:bio.045310. [PMID: 31649119 PMCID: PMC6899028 DOI: 10.1242/bio.045310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One measure of hypoxia tolerance is the critical oxygen threshold, Pcrit, which is the point where standard metabolism can no longer be maintained through aerobic processes. Traditionally, Pcrit was determined using closed respirometry, whereby the fish's respiration naturally lowered O2. More recently, intermittent flow techniques have been adopted, where N2 is used to displace O2, which ostensibly reduces end-product build-up. This study used a paired design on the marine teleost, red drum. Pcrit is comparable between closed (4.6±0.2 kPa; mean±s.e.m.) and intermittent flow (4.4±0.2 kPa; mean±s.e.m.) respirometry. pCO2, ammonia and pH changes within the chamber were measured prior to the onset of Pcrit and at the end of a typical Pcrit trial and revealed changes in water chemistry in both closed and intermittent flow. Pcrit values were similar in both methods of hypoxia induction regardless of subsequent water chemistry changes that occurred in both methods. Summary: The two leading methods of measuring the critical oxygen threshold in fishes are similar in their estimations, regardless of changes to water chemistry.
Collapse
Affiliation(s)
- Benjamin Negrete
- Department of Marine Science, Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Department of Marine Science, Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
16
|
Giacomin M, Bryant HJ, Val AL, Schulte PM, Wood CM. The osmorespiratory compromise: physiological responses and tolerance to hypoxia are affected by salinity acclimation in the euryhaline Atlantic killifish ( Fundulus heteroclitus). ACTA ACUST UNITED AC 2019; 222:jeb.206599. [PMID: 31488621 DOI: 10.1242/jeb.206599] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
The characteristics of the fish gill that maximize gas exchange are the same that promote diffusion of ions and water to and from the environment; therefore, physiological trade-offs are likely to occur. Here, we investigated how salinity acclimation affects whole-animal respiratory gas exchange during hypoxia using Fundulus heteroclitus, a fish that inhabits salt marshes where salinity and oxygen levels vary greatly. Salinity had marked effects on hypoxia tolerance, with fish acclimated to 11 and 35 ppt showing much longer time to loss of equilibrium (LOE) in hypoxia than 0 ppt-acclimated fish. Fish acclimated to 11 ppt (isosmotic salinity) exhibited the greatest capacity to regulate oxygen consumption rate (Ṁ O2 ) under hypoxia, as measured through the regulation index (RI) and P crit At 35 ppt, fish had a higher routine metabolic rate (RMR) but a lower RI than fish at 11 ppt, but there were no differences in gill morphology, ventilation or blood O2 transport properties between these groups. In contrast, 0 ppt-acclimated fish had the highest ventilation and lowest O2 extraction efficiency in normoxia and hypoxia, indicating a higher ventilatory workload in order to maintain similar levels of Ṁ O2 These differences were related to alterations in gill morphology, where 0 ppt-acclimated fish had the smallest lamellar surface area with the greatest epithelial cell coverage (i.e. thicker lamellae, longer diffusion distance) and a larger interlamellar cell mass, contrasting with 11 ppt-acclimated fish, which had overall the highest respiratory surface area. The alteration of an array of physiological parameters provides evidence for a compromise between salinity and hypoxia tolerance in killifish acclimated to freshwater.
Collapse
Affiliation(s)
- Marina Giacomin
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4 .,Bamfield Marine Sciences Centre, Bamfield, BC, Canada V0R 1B0
| | - Heather J Bryant
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas 69080-971, Brazil
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Bamfield Marine Sciences Centre, Bamfield, BC, Canada V0R 1B0.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
17
|
Metabolic response of longitudinal muscles to acute hypoxia in sea cucumber Apostichopus japonicus (Selenka): A metabolome integrated analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:235-244. [DOI: 10.1016/j.cbd.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 01/16/2023]
|