1
|
Tuna Y, Al-Hiyasat A, Kashkanova AD, Dechant A, Lutz E, Sandoghdar V. Electrostatic All-Passive Force Clamping of Charged Nanoparticles. ACS NANO 2025; 19:10173-10179. [PMID: 40036500 PMCID: PMC11924585 DOI: 10.1021/acsnano.4c17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In the past decades, many techniques have been explored for trapping microscopic and nanoscopic objects, but the investigation of nano-objects under arbitrary forces and conditions remains nontrivial. One fundamental case concerns the motion of a particle under a constant force, known as force clamping. Here, we employ metallic nanoribbons embedded in a glass substrate in a capacitor configuration to generate a constant electric field on a charged nanoparticle in a water-filled glass nanochannel. We estimate the force fields from Brownian trajectories over several micrometers and confirm the constant behavior of the forces both numerically and experimentally. Furthermore, we manipulate the diffusion and relaxation times of the nanoparticles by tuning the charge density on the electrode. Our highly compact and controllable setting allows for the trapping and force-clamping of charged nanoparticles in a solution, providing a platform for investigating nanoscopic diffusion phenomena.
Collapse
Affiliation(s)
- Yazgan Tuna
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Amer Al-Hiyasat
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna D Kashkanova
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Andreas Dechant
- Department of Physics #1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, 70569 Stuttgart, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander University, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Carpenter W, Lavania AA, Squires AH, Moerner WE. Label-Free Anti-Brownian Trapping of Single Nanoparticles in Solution. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20275-20286. [PMID: 39634022 PMCID: PMC11613540 DOI: 10.1021/acs.jpcc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Today, biomolecular nanoparticles are prevalent as diagnostic tools and molecular delivery carriers, and it is particularly useful to examine individuals within a sample population to quantify the variations between objects and directly observe the molecular dynamics involving these objects. Using interferometric scattering as a highly sensitive label-free detection scheme, we recently developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap to hold a single nanoparticle in solution for extended optical observation. In this perspective, we describe how we implemented this trap, how it extends the capabilities of previous ABEL traps, and how we have begun to study individual carboxysomes, a fascinating biological carbon fixation nanocompartment. By monitoring single nanocompartments for seconds to minutes in the ISABEL trap using simultaneous interferometric scattering and fluorescence spectroscopy, we have demonstrated single-compartment mass measurements, cargo-loading trends, and redox sensing inside individual particles. These experiments benefit from rich multiplexed correlative measurements utilizing both scattering and fluorescence with many exciting future capabilities within reach.
Collapse
Affiliation(s)
- William
B. Carpenter
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abhijit A. Lavania
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Allison H. Squires
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
- Chan
Zuckerberg Biohub Chicago, LLC, Chicago, Illinois 60642, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Wu M, Liao W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6342. [PMID: 39409397 PMCID: PMC11478462 DOI: 10.3390/s24196342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking drug carriers (e.g., microbubble), acoustic trap holds promise for increasing MRI-guided microbubbles (MBs) accumulation in target microvessels, improving drug carrier concentration. However, accurate trap generation remains challenging due to complex ultrasound propagation in tissues. Moreover, the MBs' short lifetime demands high computation efficiency for trap position adjustments based on real-time MRI-guided carrier monitoring. To this end, we propose a machine learning-based model to modulate the transducer array. Our model delivers accurate prediction of both time-of-flight (ToF) and pressure amplitude, achieving low average prediction errors for ToF (-0.45 µs to 0.67 µs, with only a few isolated outliers) and amplitude (-0.34% to 1.75%). Compared with the existing methods, our model enables rapid prediction (<10 ms), achieving a four-order of magnitude improvement in computational efficiency. Validation results based on different transducer sizes and penetration depths support the model's adaptability and potential for future ultrasound treatments.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Wentao Liao
- Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen 518005, China;
| |
Collapse
|
4
|
Squires AH. Electrokinetic manipulation of a nanowire. NATURE NANOTECHNOLOGY 2023; 18:1128-1129. [PMID: 37500781 DOI: 10.1038/s41565-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Tan X, Hou S, Niver A, Zhang C, Johnson A, Welsher KD. Active-Feedback 3D Single-Molecule Tracking Using a Fast-Responding Galvo Scanning Mirror. J Phys Chem A 2023; 127:6320-6328. [PMID: 37477600 PMCID: PMC11025461 DOI: 10.1021/acs.jpca.3c02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Real-time three-dimensional single-particle tracking (RT-3D-SPT) allows continuous detection of individual freely diffusing objects with high spatiotemporal precision by applying closed-loop active feedback in an optical microscope. However, the current tracking speed in RT-3D-SPT is primarily limited by the response time of the control actuators, impeding long-term observation of fast diffusive objects such as single molecules. Here, we present an RT-3D-SPT system with improved tracking performance by replacing the XY piezoelectric stage with a galvo scanning mirror with an approximately 5 times faster response rate (∼5 kHz). Based on the previously developed 3D single-molecule active real-time tracking (3D-SMART), this new implementation with a fast-responding galvo mirror eliminates the mechanical movement of the sample and allows a more rapid response to particle motion. The improved tracking performance of the galvo mirror-based implementation is verified through simulation and proof-of-principle experiments. Fluorescent nanoparticles and ∼1 kB double-stranded DNA molecules were tracked via both the original piezoelectric stage and new galvo mirror implementations. With the new galvo-based implementation, notable increases in tracking duration, localization precision, and the degree to which the objects are locked to the center of the detection volume were observed. These results suggest that faster control response elements can expand RT-3D-SPT to a broader range of chemical and biological systems.
Collapse
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shangguo Hou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Anastasia Niver
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chen Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Alexis Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kevin D Welsher
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 338] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
7
|
van Heerden B, Kruger T. Theoretical comparison of real-time feedback-driven single-particle tracking techniques. J Chem Phys 2022; 157:084111. [DOI: 10.1063/5.0096729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time feedback-driven single-particle tracking is a technique that uses feedbackcontrol to enable single-molecule spectroscopy of freely diffusing particles in nativeor near-native environments. A number of different RT-FD-SPT approaches exist,and comparisons between methods based on experimental results are of limited usedue to differences in samples and setups. In this study, we used statistical calcu-lations and dynamical simulations to directly compare the performance of differentmethods. The methods considered were the orbital method, the Knight's Tour (gridscan) method and MINFLUX, and we considered both fluorescence-based and inter-ferometric scattering (iSCAT) approaches. There is a fundamental trade-off betweenprecision and speed, with the Knight's Tour method being able to track the fastestdiffusion but with low precision, and MINFLUX being the most precise but onlytracking slow diffusion. To compare iSCAT and fluorescence, different biologicalsamples were considered, including labeled and intrinsically fluorescent samples. Thesuccess of iSCAT as compared to fluorescence is strongly dependent on the particlesize and the density and photophysical properties of the fluorescent particles. Usinga wavelength for iSCAT that is negligibly absorbed by the tracked particle allowsan increased illumination intensity, which results in iSCAT providing better trackingfor most samples. This work highlights the fundamental aspects of performance inRT-FD-SPT and should assist with the selection of an appropriate method for a par-ticular application. The approach used can easily be extended to other RT-FD-SPTmethods.
Collapse
|
8
|
van Heerden B, Vickers NA, Krüger TPJ, Andersson SB. Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107024. [PMID: 35758534 PMCID: PMC9308725 DOI: 10.1002/smll.202107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Indexed: 05/14/2023]
Abstract
Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role. Each of the core components of RT-FD-SPT are systematically discussed in order to develop an understanding of the trade-offs that must be made in algorithm design and to create a clear picture of the important differences, advantages, and drawbacks of existing approaches. These components are feedback tracking and control, ranging from simple proportional-integral-derivative control to advanced nonlinear techniques, estimation to determine particle location from the measured data, including both online and offline algorithms, and techniques for calibrating and characterizing different RT-FD-SPT methods. Then a collection of metrics for RT-FD-SPT is introduced to help guide experimentalists in selecting a method for their particular application and to help reveal where there are gaps in the techniques that represent opportunities for further development. Finally, this review is concluded with a discussion on future perspectives in the field.
Collapse
Affiliation(s)
- Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nicholas A Vickers
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Sean B Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
9
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
10
|
Sielaff H, Dienerowitz F, Dienerowitz M. Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases. NANOSCALE 2022; 14:2327-2336. [PMID: 35084006 DOI: 10.1039/d1nr05754e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FOF1-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment. In addition, we are able to monitor complete reaction cycles and to selectively trap active molecules based on their smFRET signal, thus speeding up the data acquisition process. We demonstrate the capability of our method to study the dynamics of single molecules by recording the ATP-hydrolysis driven rotation of individual FOF1-ATP synthase molecules over numerous reaction cycles and extract their kinetic rates. We argue that our method is not limited to motor proteins. Instead, it can be applied to monitor conformational changes with millisecond time resolution for a wide range of enzymes, thereby making it a versatile tool for studying protein dynamics.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore, Singapore
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
11
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Tiwari S, Khandelwal U, Sharma V, Kumar GVP. Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. J Phys Chem Lett 2021; 12:11910-11918. [PMID: 34878793 DOI: 10.1021/acs.jpclett.1c03450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single-molecule spectroscopic signatures. Facilitating this capability in optically trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ the bianalyte SERS technique to ascertain the single molecule statistical signatures and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power (≈ 0.1 mW/μm2) tweezer platform to trap a single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments and to be potentially adapted as an in vivo plasmonic tweezer.
Collapse
Affiliation(s)
- Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Utkarsh Khandelwal
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Vandana Sharma
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
13
|
Abstract
Traditional studies of enzymatic activity rely on the combined kinetics of millions of enzyme molecules to produce a product, an experimental approach that may wash out heterogeneities that exist between individual enzymes. Evaluating these properties on an enzyme-by-enzyme basis represents an unambiguous means of elucidating heterogeneities; however, the quantification of enzymatic activity at the single-enzyme level is fundamentally limited by the maximum catalytic rate, kcat, inherent to a given enzyme. For electrochemical methods measuring current, single enzymes must turn over greater than 107 molecules per second to produce a measurable signal on the order of 10-12 A. Enzymes with this capability are extremely rare in nature, with typical kcat values for biologically relevant enzymes falling between 1 and 10 000 s-1. Thus, clever amplification strategies are necessary to electrochemically detect the vast majority of enzymes. This review details the progress toward the electroanalytical detection and evaluation of single enzyme kinetics largely focused on the nanoimpact method, a chronoamperometric detection strategy that monitors the change in the current-time profile associated with stochastic collisions of freely diffusing entities (e.g., enzymes) onto a microelectrode or nanoelectrode surface. We discuss the experimental setups and methods developed in the last decade toward the quantification of single molecule enzymatic rates. Special emphasis is given to the limitations of measurement science in the observation of single enzyme activity and feasible methods of signal amplification with reasonable bandwidth.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Andrey Ryabykh
- Department of Physical and Inorganic Chemistry, Altai State University, Barnaul, Altai Krai, Russia656049
| | - Andrei I Chapoval
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, Altai Krai, Russia656049
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Dienerowitz M, Howard JAL, Quinn SD, Dienerowitz F, Leake MC. Single-molecule FRET dynamics of molecular motors in an ABEL trap. Methods 2021; 193:96-106. [PMID: 33571667 DOI: 10.1016/j.ymeth.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap's inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. In this work we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 seconds with sub-millisecond time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.
Collapse
Affiliation(s)
- Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2 - 4, 07743 Jena, Germany.
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
15
|
Bakhshandeh A, Frydel D, Levin Y. Charge regulation of colloidal particles in aqueous solutions. Phys Chem Chem Phys 2020; 22:24712-24728. [PMID: 33104140 DOI: 10.1039/d0cp03633a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We study the charge regulation of colloidal particles inside aqueous electrolyte solutions. To stabilize a colloidal suspension against precipitation, colloidal particles are synthesized with either acidic or basic groups on their surface. On contact with water, these surface groups undergo proton transfer reactions, resulting in colloidal surface charge. The charge is determined by the condition of local chemical equilibrium between hydronium ions inside the solution and at the colloidal surface. We use a model of Baxter sticky spheres to explicitly calculate the equilibrium dissociation constants and to construct a theory which is able to quantitatively predict the effective charge of colloidal particles with either acidic or basic surface groups. The predictions of the theory for the model are found to be in excellent agreement with the results of Monte Carlo simulations. This theory is further extended to treat colloidal particles with a mixture of both acidic and basic surface groups.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|