1
|
Cai L, Huang Y, Johnson D, Li M, Liu R, Hu W, Jin Y, Chen X, Tao J, Zou X, Hou Y. Swimming ability of cyprinid species (subfamily schizothoracinae) at high altitude. Front Physiol 2023; 14:1152697. [PMID: 37546530 PMCID: PMC10399625 DOI: 10.3389/fphys.2023.1152697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
The primary objective of this investigation was to study the effect of altitude on fish swimming ability. Different species were tested to ensure that the differences observed are not associated with a single species. Fish critical swimming speed and burst speed were determined using stepped-velocity tests in a Brett-type swimming respirometer. Based on the effects of water temperature and dissolved oxygen, it is clear that the swimming ability of fish decreases as altitude increases. Further, because the effects of high altitude on fish physiology go beyond the effects of lower temperature and dissolved oxygen, we recommend that fish swimming ability be tested at an altitude similar to the target fishway site to ensure the validity of fish data used for fishway design.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang, China
| | - David Johnson
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang, China
- School of Natural Sciences and Mathematics, Ferrum College, Ferrum, VA, United States
| | - Minne Li
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang, China
| | - Rui Liu
- Northwest Engineering Corporation Limited of PowerChina, Xian, China
| | - Wangbin Hu
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Yao Jin
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Xiaojuan Chen
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Jiangping Tao
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Xuan Zou
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
- GNSS Research Center, Wuhan University, Wuhan, China
| | - Yiqun Hou
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Samaras A, Tsoukali P, Katsika L, Pavlidis M, Papadakis IE. Chronic impact of exposure to low dissolved oxygen on the physiology of Dicentrarchus labrax and Sparus aurata and its effects on the acute stress response. AQUACULTURE 2023; 562:738830. [DOI: 10.1016/j.aquaculture.2022.738830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Martínez-Bautista G, Martínez-Burguete T, Peña-Marín ES, Jiménez-Martínez LD, Martínez-García R, Camarillo-Coop S, Burggren WW, Álvarez-González CA. Hypoxia- and hyperoxia-related gene expression dynamics during developmental critical windows of the tropical gar Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111093. [PMID: 34626804 DOI: 10.1016/j.cbpa.2021.111093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Aquatic hypoxia is both a naturally-occurring and anthropogenically-generated event. Fish species have evolved different adaptations to cope with hypoxic environments, including gill modifications and air breathing. However, little is known about the molecular mechanisms involved in the respiration of embryonic and larval fishes during critical windows of development. We assessed expression of the genes hif-1α, fih-1, nhe1, epo, gr and il8 using the developing tropical gar as a piscine model during three developmental periods (fertilization to hatch, 1 to 6 days post hatch (dph) and 7 to 12 dph) when exposed to normoxia (~7.43 mg/L DO), hypoxia (~2.5 mg/L DO) or hyperoxia (~9.15 mg/L DO). All genes had higher expression when fish were exposed to either hypoxia or hyperoxia during the first two developmental periods. However, fish continuously exposed to hypoxia had increased expression of the six genes by hatching and 6 dph, and by 12 dph only hif-1α still had increased expression. The middle developmental period was the most hypoxia-sensitive, coinciding with several changes in physiology and morphology. The oldest larvae were the most resilient to gene expression change, with little variation in expression of the six genes compared. This study is the first to relate the molecular response of an air-breathing fish to oxygen availability to developmental critical windows and contributes to our understanding of some molecular responses of developing fish to changes in oxygen availability.
Collapse
Affiliation(s)
- Gil Martínez-Bautista
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; Developmental Physiology Laboratory, Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States.
| | - Talhia Martínez-Burguete
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Emyr Saul Peña-Marín
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Luis Daniel Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Rafael Martínez-García
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Warren W Burggren
- Developmental Physiology Laboratory, Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Carlos Alfonso Álvarez-González
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
4
|
Yang Y, Wang Z, Wang J, Lyu F, Xu K, Mu W. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:919-938. [PMID: 33860915 DOI: 10.1007/s10695-021-00947-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Hypoxia is one of the most significant threats to biodiversity in aquatic systems. The ability of high-latitude fish to tolerate hypoxia with histological and physiological responses is mostly unknown. We address this knowledge gap by investigating the effects of exposures to different oxygen levels using Phoxinus lagowskii (a high-latitude, cold-water fish) as a model. Fish were exposed to different oxygen levels (0.5 mg/L and 3 mg/L) for 24 h. The loss of equilibrium (LOE), an indicator of acute hypoxia tolerance, was 0.21 ± 0.01 mg/L, revealing the ability of fish to tolerate low-oxygen conditions. We sought to determine if, in P. lagowskii, the histology of gills and liver, blood indicators, enzyme activities of carbohydrate and lipid metabolism, and antioxidants changed to relieve stress in response to acute hypoxia. Notably, changes in vigorous jumping behavior under low oxygen revealed the exceptional hypoxia acclimation response compared with other low-latitude fish. A decrease in blood parameters, including RBC, WBC, and Hb, as well as an increase in MCV was observed compared to the controls. The increased total area in lamella and decreased ILCM volume in P. lagowskii gills were detected in the present study. Our results also showed the size of vacuoles in the livers of the hypoxic fish shrunk. Interestingly, an increase in the enzyme activity of lipid metabolism but not glucose metabolism was observed in the groups exposed to hypoxia at 6 h and 24 h. After combining histology and physiology results, our findings provide evidence that lipid metabolism plays a crucial role in enhancing hypoxia acclimation in P. lagowskii. Additionally, SOD activity significantly increased during hypoxia, suggesting the presence of an antioxidant response of P. lagowskii during hypoxia. High expression levels of lipogenesis and lipolysis-related genes were detected in the 6 h 3 mg/L and 24 h 3 mg/L hypoxia group. Enhanced expression of lipid-metabolism genes (ALS4, PGC-1, and FASN) was detected during hypoxia exposure. Together, these data suggest that P. lagowskii's ability to tolerate hypoxic events is likely mediated by a comprehensive strategy.
Collapse
Affiliation(s)
- Yuting Yang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jing Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fengming Lyu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kexin Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|