1
|
Lan Q, Wu P, Yu Y, Zhou J, Lu H. Metabolic engineering of Kluyveromyces marxianus to produce myo-inositol from starch. BIORESOURCE TECHNOLOGY 2025; 426:132370. [PMID: 40064453 DOI: 10.1016/j.biortech.2025.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
To efficiently produce myo-inositol from glucose, the PGI1, ZWF1, ITR2, and MIOX5 genes in Kluyveromyces marxianus were knocked out to block glucose metabolism via the Embden-Meyerhof-Parnas (EMP) and pentose phosphate pathways (PPP), prevent myo-inositol oxidative degradation. The metabolically engineered KM-JC4 strain, introduced with myo-inositol synthesis genes, produced 80.7 g/L in a 5 L bioreactor using glucose and glycerol as carbon sources. Subsequently, the starch-fermenting and inositol-producing strain KM-JC5 was constructed by co-expressing BadGlA, an α-glucoamylase from Blastobotrys adeninivorans with high ability to release glucose from soluble starch, and the myo-inositol synthesis enzymes. Using 5% soluble starch and liquefied starch, the myo-inositol yields reached 32.2 g/L and 40.6 g/L, with the starch-to-myo-inositol conversion rates of 64.4% and 81.1%, respectively. This study provides an effective strategy for bioproduction by balancing glycolysis and PPP metabolism in yeast, and the metabolically engineered strain represents a promising platform for inositol production.
Collapse
Affiliation(s)
- Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China; Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| |
Collapse
|
2
|
Park SW, Park BK, Ju YW, Benashvili M, Moon CR, Lee S, Lee J, Son YJ. Inoculation of starter cultures in dry processing enhanced the contents of bioactive compounds and sensory characteristics of Arabica coffee (Coffea arabica L.). Food Chem 2025; 475:143226. [PMID: 39938259 DOI: 10.1016/j.foodchem.2025.143226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Coffee is an economically important crop and one of the most consumed beverages worldwide. Despite the beneficial potential of microbes in coffee fermentation, studies on their application in dry-processed coffee are lacking. Therefore, we evaluated the microbiological, chemical, and sensory changes in Arabica coffee cherries inoculated with Leuconostoc mesenteroides, Saccharomyces cerevisiae (SC), and Aspergillus oryzae during dry processing. Inoculation with these three starter cultures altered the chemical profile of fermented coffee cherries and nearly doubled the 5-caffeoylquinic acid content in the bean compared to the uninoculated group. Additionally, microorganism-inoculated coffee beans showed markedly increased antioxidative capacities. Sensory evaluation revealed improved scores for all inoculated coffees, with SC-inoculated coffee achieving the highest sensory score (84.00 ± 0.25), while the uninoculated group received 80.17 ± 1.04 (p < 0.05). Our results suggest that inoculating specific microorganisms during dry processing can enhance coffee quality by improving the bioactive compound contents and sensory characteristics.
Collapse
Affiliation(s)
- So-Won Park
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Bong-Ki Park
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Young-Woong Ju
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chae-Ryun Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jihyun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Guo B, Yu W, Xu X, Liu Y, Liu Y, Du G, Liu L, Lv X. Adaptively Evolved and Multiplexed Engineered Saccharomyces cerevisiae for Neutralizer-Free Production of l-Lactic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9009-9018. [PMID: 40191959 DOI: 10.1021/acs.jafc.4c12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
l-Lactic acid is a three-carbon monocarboxylic acid that has extensive applications. However, the bioproduction of l-lactic acid requires the addition of neutralizers, which significantly increases the production costs and can cause environmental pollution. To address this, a Saccharomyces cerevisiae mutant, TMG2, which can tolerate a lactic acid environment (pH 2.60), was obtained through adaptive laboratory evolution. Subsequently, the "push-pull-restrain" strategy was used to improve l-lactic acid production, resulting in a production of 46.8 g/L l-lactic acid. Finally, by overexpressing the transport protein pPfFNT and improving the NADH and acetyl-CoA supply, the l-lactic acid titer of strain TMG27 was improved by 33.8% to 62.6 g/L. Without neutralizers, the l-lactic acid titer reached 76.2 g/L (the fermentation pH was 2.90) with a productivity of 2.1 g/(L h) in a 5-L bioreactor, representing the highest productivity ever reported. Collectively, these results lay the foundation for the environmentally friendly bioproduction of l-lactic acid.
Collapse
Affiliation(s)
- Baoyuan Guo
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yujie Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Henan Jindan Lactic Acid Technology Co., Ltd., Dancheng 477100, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Pereira LMS, Taveira IC, Maués DB, de Paula RG, Silva RN. Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production. Appl Microbiol Biotechnol 2025; 109:19. [PMID: 39841260 PMCID: PMC11754382 DOI: 10.1007/s00253-025-13408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways. The review also emphasizes the potential of genetic engineering to enhance the specificity and efficiency of these transporters, overcoming challenges such as substrate competition and limited pentose metabolism in industrial strains. By integrating the latest research findings, this work underscores the pivotal role of fungal STs in optimizing lignocellulosic bioethanol production and advancing the bioeconomy. Future prospects for engineering transport systems and their implications for industrial biotechnology are also discussed. KEY POINTS: STs present a conserved structure with different sugar affinities STs are involved in the signaling and transport of sugars derived from plant biomass Genetic engineering of STs can improve 2G bioethanol production.
Collapse
Affiliation(s)
- Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
5
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Meier S, Wang KC, Sannelli F, Hoof JB, Wendland J, Jensen PR. Visualizing Metabolism in Biotechnologically Important Yeasts with dDNP NMR Reveals Evolutionary Strategies and Glycolytic Logic. Anal Chem 2024; 96:10901-10910. [PMID: 38938197 DOI: 10.1021/acs.analchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Saccharomyces cerevisiae has long been a pillar of biotechnological production and basic research. More recently, strides to exploit the functional repertoire of nonconventional yeasts for biotechnological production have been made. Genomes and genetic tools for these yeasts are not always available, and yeast genomics alone may be insufficient to determine the functional features in yeast metabolism. Hence, functional assays of metabolism, ideally in the living cell, are best suited to characterize the cellular biochemistry of such yeasts. Advanced in cell NMR methods can allow the direct observation of carbohydrate influx into central metabolism on a seconds time scale: dDNP NMR spectroscopy temporarily enhances the nuclear spin polarization of substrates by more than 4 orders of magnitude prior to functional assays probing central metabolism. We use various dDNP enhanced carbohydrates for in-cell NMR to compare the metabolism of S. cerevisiae and nonconventional yeasts, with an emphasis on the wine yeast Hanseniaspora uvarum. In-cell observations indicated more rapid exhaustion of free cytosolic NAD+ in H. uvarum and alternative routes for pyruvate conversion, in particular, rapid amination to alanine. In-cell observations indicated that S. cerevisiae outcompetes other biotechnologically relevant yeasts by rapid ethanol formation due to the efficient adaptation of cofactor pools and the removal of competing reactions from the cytosol. By contrast, other yeasts were better poised to use redox neutral processes that avoided CO2-emission. Beyond visualizing the different cellular strategies for arriving at redox neutral end points, in-cell dDNP NMR probing showed that glycolytic logic is more conserved: nontoxic precursors of cellular building blocks formed high-population intermediates in the influx of glucose into the central metabolism of eight different biotechnologically important yeasts. Unsupervised clustering validated that the observation of rapid intracellular chemistry is a viable means to functionally classify biotechnologically important organisms.
Collapse
Affiliation(s)
- Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Ke-Chuan Wang
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| | - Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Jakob Blæsbjerg Hoof
- Department of Bioengineering, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs. Lyngby, Denmark
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Pernille Rose Jensen
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Ruan L, Wu H, Wu S, Zhou L, Wu S, Shang C. Optimizing the Conditions of Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse for Bioethanol Production. ACS OMEGA 2024; 9:29566-29575. [PMID: 39005808 PMCID: PMC11238294 DOI: 10.1021/acsomega.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Haifeng Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shiya Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Lifei Zhou
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shangxin Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
8
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Bai X, Wang S, Zhang Q, Hu Y, Zhou J, Men L, Li D, Ma J, Wei Q, Xu M, Yin X, Hu T. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8704-8714. [PMID: 38572931 DOI: 10.1021/acs.jafc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.
Collapse
Affiliation(s)
- Xue Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawei Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dengyu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengdie Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Yi X, Rasor BJ, Boadi N, Louie K, Northen TR, Karim AS, Jewett MC, Alper HS. Establishing a versatile toolkit of flux enhanced strains and cell extracts for pathway prototyping. Metab Eng 2023; 80:241-253. [PMID: 37890611 DOI: 10.1016/j.ymben.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.
Collapse
Affiliation(s)
- Xiunan Yi
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Nathalie Boadi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Katherine Louie
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Gosalawit C, Khunnonkwao P, Jantama K. Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12658-2. [PMID: 37405435 DOI: 10.1007/s00253-023-12658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.
Collapse
Affiliation(s)
- Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Panwana Khunnonkwao
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
12
|
Janne Carvalho Ferreira L, de Souza Gomes M, Maciel de Oliveira L, Diniz Santos L. Coffee fermentation process: A review. Food Res Int 2023; 169:112793. [PMID: 37254380 DOI: 10.1016/j.foodres.2023.112793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the importance of controlling coffee fermentation in the final quality of the beverage has been recognized. The literature review was conducted in the Science Direct and Springer databases, considering studies published in the last ten years, 74 references were selected. Several studies have been developed to evaluate and propose fermentation conditions that result in sensory improvements in coffee. So, this review aims to describe detailed the different protocols for conducting the coffee fermentation step and how they could influence the sensory quality of coffee based on the Specialty Coffee Association protocol. We propose a new way to identify coffee post-harvest processing not based on the already known wet, dry and semi-dry processing. The new identification is focused on considering fermentation as a step influenced by the coffee fruit treatment, availability of oxygen, water addition, and starter culture utilization. The findings of this survey showed that each type of coffee fermentation protocol can influence the microbiota development and consequently the coffee beverage. There is a migration from the use of processes in open environments to closed environments with controlled anaerobic conditions. However, it is not possible yet to define a single process capable of increasing coffee quality or developing a specific sensory pattern in any environmental condition. The use of starter cultures plays an important role in the sensory differentiation of coffee and can be influenced by the fermentation protocol applied. The application of fermentation protocols well defined is essential in order to have a good product also in terms of food safety. More research is needed to develop and implement environmental control conditions, such as temperature and aeration, to guarantee the reproducibility of the results.
Collapse
Affiliation(s)
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| | - Liliane Maciel de Oliveira
- Department of Food Engineering, Federal University of São João del-Rei, Sete Lagoas, Minas Gerais, Brazil.
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Perrot T, Besseau S, Papon N, Courdavault V. Gaining access to acetyl-CoA by peroxisomal surface display. Synth Syst Biotechnol 2023; 8:224-226. [PMID: 36936387 PMCID: PMC10020669 DOI: 10.1016/j.synbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Synthetic biology is constantly making progress for producing compounds on demand. Recently, Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane. This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
- Corresponding author.
| |
Collapse
|
14
|
Sannelli F, Jensen PR, Meier S. In-Cell NMR Approach for Real-Time Exploration of Pathway Versatility: Substrate Mixtures in Nonengineered Yeast. Anal Chem 2023; 95:7262-7270. [PMID: 37097609 DOI: 10.1021/acs.analchem.3c00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The central carbon metabolism of microbes will likely be used in future sustainable bioproduction. A sufficiently deep understanding of central metabolism would advance the control of activity and selectivity in whole-cell catalysis. Opposite to the more obvious effects of adding catalysts through genetic engineering, the modulation of cellular chemistry through effectors and substrate mixtures remains less clear. NMR spectroscopy is uniquely suited for in-cell tracking to advance mechanistic insight and to optimize pathway usage. Using a comprehensive and self-consistent library of chemical shifts, hyperpolarized NMR, and conventional NMR, we probe the versatility of cellular pathways to changes in substrate composition. Conditions for glucose influx into a minor pathway to an industrial precursor (2,3-butanediol) can thus be designed. Changes to intracellular pH can be followed concurrently, while mechanistic details for the minor pathway can be derived using an intermediate-trapping strategy. Overflow at the pyruvate level can be induced in nonengineered yeast with suitably mixed carbon sources (here glucose with auxiliary pyruvate), thus increasing glucose conversion to 2,3-butanediol by more than 600-fold. Such versatility suggests that a reassessment of canonical metabolism may be warranted using in-cell spectroscopy.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
15
|
Feng L, Xu J, Ye C, Gao J, Huang L, Xu Z, Lian J. Metabolic Engineering of Pichia pastoris for the Production of Triacetic Acid Lactone. J Fungi (Basel) 2023; 9:jof9040494. [PMID: 37108948 PMCID: PMC10145311 DOI: 10.3390/jof9040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Triacetic acid lactone (TAL) is a promising renewable platform polyketide with broad biotechnological applications. In this study, we constructed an engineered Pichia pastoris strain for the production of TAL. We first introduced a heterologous TAL biosynthetic pathway by integrating the 2-pyrone synthase encoding gene from Gerbera hybrida (Gh2PS). We then removed the rate-limiting step of TAL synthesis by introducing the posttranslational regulation-free acetyl-CoA carboxylase mutant encoding gene from S. cerevisiae (ScACC1*) and increasing the copy number of Gh2PS. Finally, to enhance intracellular acetyl-CoA supply, we focused on the introduction of the phosphoketolase/phosphotransacetylase pathway (PK pathway). To direct more carbon flux towards the PK pathway for acetyl-CoA generation, we combined it with a heterologous xylose utilization pathway or endogenous methanol utilization pathway. The combination of the PK pathway with the xylose utilization pathway resulted in the production of 825.6 mg/L TAL in minimal medium with xylose as the sole carbon source, with a TAL yield of 0.041 g/g xylose. This is the first report on TAL biosynthesis in P. pastoris and its direct synthesis from methanol. The present study suggests potential applications in improving the intracellular pool of acetyl-CoA and provides a basis for the construction of efficient cell factories for the production of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Linjuan Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Junhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
16
|
Zhang Y, Su M, Chen Y, Wang Z, Nielsen J, Liu Z. Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:64. [PMID: 37031180 PMCID: PMC10082987 DOI: 10.1186/s13068-023-02309-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. RESULTS Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. CONCLUSIONS In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Wang Y, Yu L, Shao J, Zhu Z, Zhang L. Structure-driven protein engineering for production of valuable natural products. TRENDS IN PLANT SCIENCE 2023; 28:460-470. [PMID: 36473772 DOI: 10.1016/j.tplants.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Proteins are the most frequently used biocatalysts, and their structures determine their functions. Modifying the functions of proteins on the basis of their structures lies at the heart of protein engineering, opening a new horizon for metabolic engineering by efficiently generating stable enzymes. Many attempts at classical metabolic engineering have focused on improving specific metabolic fluxes and producing more valuable natural products by increasing gene expression levels and enzyme concentrations. However, most naturally occurring enzymes show limitations, and such limitations have hindered practical applications. Here we review recent advances in protein engineering in synthetic biology, chemoenzymatic synthesis, and plant metabolic engineering and describe opportunities for designing and constructing novel enzymes or proteins with desirable properties to obtain more active natural products.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Shao
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
18
|
Gambacorta FV, Dietrich JJ, Baerwald JJ, Brown SJ, Su Y, Pfleger BF. Combinatorial library design for improving isobutanol production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:1080024. [PMID: 36532572 PMCID: PMC9755324 DOI: 10.3389/fbioe.2022.1080024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Saccharomyces cerevisiae is the dominant fermentative producer of ethanol in industry and a preferred host for production of other biofuels. That said, rewiring the metabolism of S. cerevisiae to produce other fermentation products, such as isobutanol, remains an academic challenge. Many studies report aerobic production of isobutanol, but ethanol remains a substantial by-product under these conditions due to the Crabtree effect. These studies indicate that the native isobutanol pathway is incapable of carrying sufficient flux to displace ethanol. In this report, we screened a combinatorial library of pathway enzymes to identify an isobutanol pathway cassette capable of supporting the growth of a non-ethanol producing S. cerevisiae. We began by identifying a diverse set of isobutanol pathway enzyme homologs and combined each open reading frame with varied-strength promoters in a combinatorial, pooled fashion. We applied a growth-coupled screen where a functional isobutanol pathway restored NAD+ regeneration during glucose catabolism that is otherwise repressed via the Crabtree effect. Using this screen, we isolated a cassette consisting of a mosaic of bacterial and cytosol-localized fungal enzymes that conferred under aerobic conditions the ability to produce 364 mg/L isobutanol (8.8% of the theoretical maximum yield). We next shifted the cofactor usage of the isolated ketol-acid reductoisomerase enzyme in the cassette from NADPH to NADH-preferring to improve redox balance. The approach used herein isolated isobutanol producing strains that approach the best in the literature without producing substantial ethanol titers. Still, the best isolated cassette was insufficient to support anaerobic growth in the absence of ethanol fermentation - indicating the presence of further fundamental gaps in our understanding of yeast fermentation.
Collapse
Affiliation(s)
- Francesca V. Gambacorta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua J. Dietrich
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin J. Baerwald
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Stephanie J. Brown
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian F. Pfleger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Brian F. Pfleger,
| |
Collapse
|
19
|
Rewiring regulation on respiro-fermentative metabolism relieved Crabtree effects in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:1034-1043. [PMID: 35801089 PMCID: PMC9241035 DOI: 10.1016/j.synbio.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022] Open
Abstract
The respiro-fermentative metabolism in the yeast Saccharomyces cerevisiae, also called the Crabtree effect, results in lower energy efficiency and biomass yield which can impact yields of chemicals to be produced using this cell factory. Although it can be engineered to become Crabtree negative, the slow growth and glucose consumption rate limit its industrial application. Here the Crabtree effect in yeast can be alleviated by engineering the transcription factor Mth1 involved in glucose signaling and a subunit of the RNA polymerase II mediator complex Med2. It was found that the mutant with the MTH1A81D&MED2*432Y allele could grow in glucose rich medium with a specific growth rate of 0.30 h−1, an ethanol yield of 0.10 g g−1, and a biomass yield of 0.21 g g−1, compared with a specific growth rate of 0.40 h−1, an ethanol yield of 0.46 g g−1, and a biomass yield of 0.11 g g−1 in the wild-type strain CEN.PK 113-5D. Transcriptome analysis revealed significant downregulation of the glycolytic process, as well as the upregulation of the TCA cycle and the electron transfer chain. Significant expression changes of several reporter transcription factors were also identified, which might explain the higher energy efficiencies in the engineered strain. We further demonstrated the potential of the engineered strain with the production of 3-hydroxypropionic acid at a titer of 2.04 g L−1, i.e., 5.4-fold higher than that of a reference strain, indicating that the alleviated glucose repression could enhance the supply of mitochondrial acetyl-CoA. These results suggested that the engineered strain could be used as an efficient cell factory for mitochondrial production of acetyl-CoA derived chemicals.
Collapse
|
20
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
21
|
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. ENGINEERING MICROBIOLOGY 2022; 2:100036. [PMID: 39628702 PMCID: PMC11610983 DOI: 10.1016/j.engmic.2022.100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2024]
Abstract
The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.
Collapse
Affiliation(s)
| | | | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
22
|
Wirth NT, Gurdo N, Krink N, Vidal-Verdú À, Donati S, Férnandez-Cabezón L, Wulff T, Nikel PI. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes. Metab Eng 2022; 74:83-97. [PMID: 36155822 DOI: 10.1016/j.ymben.2022.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route-the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980, Paterna, Spain
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Lorena Férnandez-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
23
|
Talapko J, Talapko D, Matić A, Škrlec I. Microorganisms as New Sources of Energy. ENERGIES 2022; 15:6365. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Anita Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
24
|
Chen H, Chai X, Wang Y, Liu J, Zhou G, Wei P, Song Y, Ma L. The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:174. [PMID: 36030199 PMCID: PMC9419380 DOI: 10.1186/s12934-022-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is often used as a cell factory for the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications. However, SAM production by S. cerevisiae is negatively influenced by glucose repression, which is regulated by a serine/threonine kinase SNF1 complex. Here, a strategy of alleviating glucose repression by deleting REG1 (encodes the regulatory subunit of protein phosphatase 1) and overexpressing SNF1 (encodes the catalytic subunit of the SNF1 complex) was applied to improve SAM production in S. cerevisiae. SAM production, growth conditions, glucose consumption, ethanol accumulation, lifespan, glycolysis and amino acid metabolism were analyzed in the mutant strains. RESULTS The results showed that the multiple effects of REG1 deletion and/or SNF1 overexpression exhibited a great potential for improving the SAM production in yeast. Enhanced the expression levels of genes involved in glucose transport and glycolysis, which improved the glucose utilization and then elevated the levels of glycolytic intermediates. The expression levels of ACS1 (encoding acetyl-CoA synthase I) and ALD6 (encoding aldehyde dehydrogenase), and the activity of alcohol dehydrogenase II (ADH2) were enhanced especially in the presence of excessive glucose levels, which probably promoted the conversion of ethanol in fermentation broth into acetyl-CoA. The gene expressions involved in sulfur-containing amino acids were also enhanced for the precursor amino acid biosynthesis. In addition, the lifespan of yeast was extended by REG1 deletion and/or SNF1 overexpression. As expected, the final SAM yield of the mutant YREG1ΔPSNF1 reached 8.28 g/L in a 10-L fermenter, which was 51.6% higher than the yield of the parent strain S. cerevisiae CGMCC 2842. CONCLUSION This study showed that the multiple effects of REG1 deletion and SNF1 overexpression improved SAM production in S. cerevisiae, providing new insight into the application of the SNF1 complex to abolish glucose repression and redirect carbon flux to nonethanol products in S. cerevisiae.
Collapse
Affiliation(s)
- Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Xiaoqin Chai
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Yan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Jing Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Guohai Zhou
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Yuhe Song
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Lu S, Zhou C, Guo X, Du Z, Cheng Y, Wang Z, He X. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism. Microb Biotechnol 2022; 15:2292-2306. [PMID: 35531990 PMCID: PMC9328733 DOI: 10.1111/1751-7915.14072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Mevalonate (MVA) pathway is the core for terpene and sterol biosynthesis, whose metabolic flux influences the synthesis efficiency of such compounds. Saccharomyces cerevisiae is an attractive chassis for the native active MVA pathway. Here, the truncated form of Enterococcus faecalis MvaE with only 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was found to be the most effective enzyme for MVA pathway flux using squalene as the metabolic marker, resulting in 431-fold and 9-fold increases of squalene content in haploid and industrial yeast strains respectively. Furthermore, a positive correlation between MVA metabolic flux and β-alanine metabolic activity was found based on a metabolomic analysis. An industrial strain SQ3-4 with high MVA metabolic flux was constructed by combined engineering HMGR activity, NADPH regeneration, cytosolic acetyl-CoA supply and β-alanine metabolism. The strain was further evaluated as the chassis for terpenoids production. Strain SQ3-4-CPS generated from expressing β-caryophyllene synthase in SQ3-4 produced 11.86 ± 0.09 mg l-1 β-caryophyllene, while strain SQ3-5 resulted from down-regulation of ERG1 in SQ3-4 produced 408.88 ± 0.09 mg l-1 squalene in shake flask cultivations. Strain SQ3-5 produced 4.94 g l-1 squalene in fed-batch fermentation in cane molasses medium, indicating the promising potential for cost-effective production of squalene.
Collapse
Affiliation(s)
- Surui Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
26
|
Gambacorta FV, Wagner ER, Jacobson TB, Tremaine M, Muehlbauer LK, McGee MA, Baerwald JJ, Wrobel RL, Wolters JF, Place M, Dietrich JJ, Xie D, Serate J, Gajbhiye S, Liu L, Vang-Smith M, Coon JJ, Zhang Y, Gasch AP, Amador-Noguez D, Hittinger CT, Sato TK, Pfleger BF. Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway. Synth Syst Biotechnol 2022; 7:738-749. [PMID: 35387233 PMCID: PMC8938195 DOI: 10.1016/j.synbio.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.
Collapse
Affiliation(s)
- Francesca V. Gambacorta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellen R. Wagner
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mick A. McGee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin J. Baerwald
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Russell L. Wrobel
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - John F. Wolters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Mike Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Dietrich
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Serate
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shabda Gajbhiye
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maikayeng Vang-Smith
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P. Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F. Pfleger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Xie T, Chen M, Nielsen J, Xia J. Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Res 2022; 22:6590040. [PMID: 35595470 DOI: 10.1093/femsyr/foac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
The Crabtree effect in the yeast, Saccharomyces cerevisiae, has been extensively studied, but only few studies have analyzed the dynamic conditions across the critical specific growth rate where the Crabtree effect sets in. Here, we carried out a multi-omics analysis of S. cerevisiae undergoing a specific growth rate transition from 0.2 h-1 to 0.35 h-1. The extracellular metabolome, the transcriptome and the proteome were analyzed in an 8-hour transition period after the specific growth rate shifted from 0.2 h-1 to 0.35 h-1. The changing trends of both the transcriptome and proteome were analyzed using principal component analysis, which showed that the transcriptome clustered together after 60 min, while the proteome reached steady-state much later. Focusing on central carbon metabolism, we analyzed both the changes in the transcriptome and proteome, and observed an interesting changing pattern in the tricarboxylic acid (TCA) pathway, which indicates an important role for citric acid shuttling across the mitochondrial membrane for α-ketoglutarate accumulation during the transition from respiratory to respiro-fermentative metabolism. This was supported by a change in the oxaloacetate and malate shuttle. Together, our findings shed new light into the onset of the Crabtree effect in S. cerevisiae.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
28
|
Su B, Lai P, Yang F, Li A, Deng MR, Zhu H. Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4019-4029. [PMID: 35319878 DOI: 10.1021/acs.jafc.2c00531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae is increasingly being used for the production of chemicals derived from acetyl coenzyme A (acetyl-CoA). However, the inadequate supply of cytosolic acetyl-CoA often leads to low yields. Here, we developed a novel strategy for balancing acetyl-CoA metabolism and increasing the amount of the downstream product. First, the combination of acetaldehyde dehydrogenase (eutE) and acetoacetyl-CoA thiolase (AtoB) was optimized to redirect the acetyl-CoA flux toward the target pathway, with a 21-fold improvement in mevalonic acid production. Second, pathway engineering and evolutionary engineering were conducted to attenuate the growth deficiency, and a 10-fold improvement of the maximum productivity was achieved. Third, acetyl-CoA carboxylase (ACC1) was dynamically downregulated as the complementary acetyl-CoA pathway, and the yield was improved more than twofold. Fourth, the most efficient and complementary acetyl-CoA pathways were combined, and the final strain produced 68 mg/g CDW lycopene, which was among the highest yields reported in S. cerevisiae. This study demonstrates a new method of producing lycopene products by regulating acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Buli Su
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Peixuan Lai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Fan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
29
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
30
|
Liu TT, Zhong JJ. Impact of oxygen supply on production of a novel ganoderic acid in Saccharomyces cerevisiae fermentation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering. PLANTS 2021; 10:plants10040754. [PMID: 33921545 PMCID: PMC8069406 DOI: 10.3390/plants10040754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/03/2022]
Abstract
β-Ionone is a natural plant volatile compound, and it is the 9,10 and 9′,10′ cleavage product of β-carotene by the carotenoid cleavage dioxygenase. β-Ionone is widely distributed in flowers, fruits, and vegetables. β-Ionone and other apocarotenoids comprise flavors, aromas, pigments, growth regulators, and defense compounds; serve as ecological cues; have roles as insect attractants or repellants, and have antibacterial and fungicidal properties. In recent years, β-ionone has also received increased attention from the biomedical community for its potential as an anticancer treatment and for other human health benefits. However, β-ionone is typically produced at relatively low levels in plants. Thus, expressing plant biosynthetic pathway genes in microbial hosts and engineering the metabolic pathway/host to increase metabolite production is an appealing alternative. In the present review, we discuss β-ionone occurrence, the biological activities of β-ionone, emphasizing insect attractant/repellant activities, and the current strategies and achievements used to reconstruct enzyme pathways in microorganisms in an effort to to attain higher amounts of the desired β-ionone.
Collapse
|