1
|
Helou B, Ritchie MW, MacMillan HA, Andersen MK. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104701. [PMID: 39251183 DOI: 10.1016/j.jinsphys.2024.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.
Collapse
Affiliation(s)
- Bassam Helou
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Andersen MK, Roe AD, Liu Y, Musso AE, Fudlosid S, Haider F, Evenden ML, MacMillan HA. The freeze-avoiding mountain pine beetle (Dendroctonus ponderosae) survives prolonged exposure to stressful cold by mitigating ionoregulatory collapse. J Exp Biol 2024; 227:jeb247498. [PMID: 38682690 PMCID: PMC11128280 DOI: 10.1242/jeb.247498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Insect performance is linked to environmental temperature, and surviving through winter represents a key challenge for temperate, alpine and polar species. To overwinter, insects have adapted a range of strategies to become truly cold hardy. However, although the mechanisms underlying the ability to avoid or tolerate freezing have been well studied, little attention has been given to the challenge of maintaining ion homeostasis at frigid temperatures in these species, despite this limiting cold tolerance for insects susceptible to mild chilling. Here, we investigated how prolonged exposure to temperatures just above the supercooling point affects ion balance in freeze-avoidant mountain pine beetle (Dendroctonus ponderosae) larvae in autumn, mid-winter and spring, and related it to organismal recovery times and survival. Hemolymph ion balance was gradually disrupted during the first day of exposure, characterized by hyperkalemia and hyponatremia, after which a plateau was reached and maintained for the rest of the 7-day experiment. The degree of ionoregulatory collapse correlated strongly with recovery times, which followed a similar asymptotical progression. Mortality increased slightly during extensive cold exposures, where hemolymph K+ concentration was highest, and a sigmoidal relationship was found between survival and hyperkalemia. Thus, the cold tolerance of the freeze-avoiding larvae of D. ponderosae appears limited by the ability to prevent ionoregulatory collapse in a manner similar to that of chill-susceptible insects, albeit at much lower temperatures. Based on these results, we propose that a prerequisite for the evolution of insect freeze avoidance may be a convergent or ancestral ability to maintain ion homeostasis during extreme cold stress.
Collapse
Affiliation(s)
| | - Amanda Diane Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Yuehong Liu
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Antonia E. Musso
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Serita Fudlosid
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Fouzia Haider
- Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Maya L. Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | | |
Collapse
|
3
|
Production Performance and Nutrient Conversion Efficiency of Field Cricket (Gryllus bimaculatus) in Mass-Rearing Conditions. Animals (Basel) 2022; 12:ani12172263. [PMID: 36077983 PMCID: PMC9454574 DOI: 10.3390/ani12172263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Farming edible insects such as field crickets (Gryllus bimaculatus), called the Mediterranean cricket, is increasingly being adapted for more commercial purposes. Adapting the mass cricket-rearing conditions for field cricket production, we found crickets had a typical growth rate and capacity for conversion of ingested feed into body mass. The efficiency of the deposition of major nutrients (inorganic matter, protein, fat, fiber, and carbohydrate) in the field crickets from the ingested feed is possible to be measured under mass cricket-rearing conditions. The feed intake and mortality rate for cricket rearing should be considered for calculating major nutrient conversion efficiency as increased mortality rate resulted in higher conversion efficiency. Abstract Currently, there is an increased interest in mass producing edible insects, e.g., field crickets (Gryllus bimaculatus), due to their market value and sustainable development. The current study aimed to measure the production performance of field crickets and to quantify the major nutrient deposition rate using a new approach for a nutrient conversion efficiency calculation for the field crickets under mass-rearing conditions. The field crickets were reared under mass-rearing conditions in the rearing crates and fed with a commercial cricket feed. Measurements for daily feed offered, final body weight, and dead cricket quantity were carried out during the feeding trial period. There were three production rounds with the same procedure for farmed cricket management. The samples of diet, adult crickets, and dead crickets were collected and then analyzed for chemical analysis of macronutrients. The production performance and nutrient conversion efficiency were calculated and then compared with applicable earlier reports for both field and house (Acheta domesticus) crickets. The production performance for the studied field crickets under mass-rearing conditions had final a body weight, an average daily gain (ADG), a feed conversion ratio (FCR), and a survival rate of 0.95 g, 23.20 mg/day, 2.94 and 88.51%, respectively. The field crickets had nutrient conversion efficiency for dry matter (DM), ash, crude protein (CP), crude fat (EE), crude fiber (CF), and nitrogen-free extract (NFE) of 13.26, 8.03, 28.95, 88.94, 34.87, and 1.85, respectively, with an adjusted nutrient conversion efficiency of 14.85, 8.99, 32.37, 99.17, 38.95, and 2.10, respectively. Thus, the production of field crickets could be performed under mass-rearing conditions, and the nutrient conversion efficiency for both adjusted and non-adjusted values could be measured.
Collapse
|
4
|
Huisamen EJ, Colinet H, Karsten M, Terblanche JS. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104403. [PMID: 35667397 DOI: 10.1016/j.jinsphys.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cold acclimation may enhance low temperature flight ability, and salt loading can alter an insects' cold tolerance by affecting their ability to maintain ion balance in the cold. Presently however, it remains unclear if dietary salt impacts thermal acclimation of flight ability in insects. Here, we examined the effect of a combination of dietary salt loading (either NaCl or KCl) and low temperature exposure on the flight ability of Drosophila melanogaster at low (15 °C) and benign (optimal, 22 °C) temperatures. Additionally, we determined whether dietary salt supplementation translates into increased K+ and Na+ levels in the bodies of D. melanogaster. Lastly, we determined whether salt supplementation impacts body mass and wing morphology, to ascertain whether any changes in flight ability were potentially driven by flight-related morphometric variation. In control flies, we find that cold acclimation enhances low temperature flight ability over non-acclimated flies confirming the beneficial acclimation hypothesis. By contrast, flies supplemented with KCl that were cold acclimated and tested at a cold temperature had the lowest flight ability, suggesting that excess dietary KCl during development negates the beneficial cold acclimation process that would have otherwise taken place. Overall, the NaCl-supplemented flies and the control group had the greatest flight ability, whilst those fed a KCl-supplemented diet had the lowest. Dietary salt supplementation translated into increased Na+ and K+ concentration in the body tissues of flies, confirming that dietary shifts are reflected in changes in body composition and are not simply regulated out of the body by homeostasis over the course of development. Flies fed with a KCl-supplemented diet tended to be larger with larger wings, whilst those reared on the control or NaCl-supplemented diet were smaller with smaller wings. Additionally, the flies with greater flight ability tended to be smaller and have lower wing loading. In conclusion, dietary salts affected wing morphology as well as ion balance, and dietary KCl seemed to have a detrimental effect on cold acclimation responses of flight ability in D. melanogaster.
Collapse
Affiliation(s)
- Elizabeth J Huisamen
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F 35000 Rennes, France.
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| |
Collapse
|
5
|
Cryoprotective Response as Part of the Adaptive Strategy of the Red Palm Weevil, Rhynchophorus ferrugineus, against Low Temperatures. INSECTS 2022; 13:insects13020134. [PMID: 35206708 PMCID: PMC8879650 DOI: 10.3390/insects13020134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Low environmental temperature acts as a barrier that imposes limits on the geographic distribution of insects. However, due to Earth’s global warming, temperature might no longer be an impediment for insects to colonize some new areas. The spread of pest insects will depend on their adaptive response to cold periods and to thermal anomalies associated with climate change. In this study we analyzed whether the red palm weevil (RPW), one of the worst palm pests worldwide and native to warm areas, has physiological mechanisms that could configure an adaptive response to cold. We find that RPW is capable of rapidly producing substances that reduce chill injuries, primarily glucose as well as glycerol and several amino acids (mainly alanine). Therefore, this work shows for the first time that RPW is able to develop adaptive biochemical responses to deal with low temperatures, similar to those used by overwintering insects. Our results could be useful to improve models predicting the possible spread of RPW to new geographical areas, and also to try to prevent its adaptive response by disrupting the metabolic pathways regulating the involved substances. Abstract The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests worldwide. In this work, we studied the physiological basis underlying its adaptive strategy against low temperatures. Specifically, we analyzed the main low-molecular-weight biochemical substances acting as possible endogenous cryoprotectants, as well as their efficiency in reducing cold injury by preserving K+/Na+ homeostasis. Wild pre-pupae were cold-treated (5.0 ± 0.5 °C) or non-treated (23 ± 1 °C) for 7 days. We then determined the levels of: (a) glucose, trehalose and glycerol, spectrophotometrically, (b) amino acids, by liquid chromatography and (c) potassium and sodium, by inductively coupled plasma mass-spectrometry. Cold-treated larvae increased their potassium level, suggesting some degree of chill injury. However, part of the cold-exposed animals was able to develop an efficient overall cryoprotective response which primarily includes glucose, as well as glycerol and several amino acids (mainly alanine). Our study shows for the first time that RPW is capable of deploying effective physiological mechanisms for a rapid response to cold, which could be relevant to improving predictive models of geographic distribution, especially in a context of climate change. The knowledge of the specific molecules involved would allow future studies to try to prevent its adaptive strategy, either by natural or chemical methods.
Collapse
|
6
|
Overgaard J, Gerber L, Andersen MK. Osmoregulatory capacity at low temperature is critical for insect cold tolerance. CURRENT OPINION IN INSECT SCIENCE 2021; 47:38-45. [PMID: 33676056 DOI: 10.1016/j.cois.2021.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
At low temperature many insects lose extracellular ion homeostasis and the capacity to mitigate homeostatic imbalance determines their cold tolerance. Extracellular homeostasis is ensured by the osmoregulatory organs and recent research has emphasized key roles for the Malpighian tubules and hindgut in modulating insect cold tolerance. Here, we review the effects of low temperature on transport capacity of osmoregulatory organs and outline physiological processes leading from cold exposure to disruption of ion homeostasis and cold-injury in insects. We show how cold adaptation and cold acclimation are associated with physiological modifications to transport capacity in Malpighian tubules and hindgut. These responses mitigate loss of homeostasis and we highlight how further study of molecular and cellular mechanisms are critical to fully appreciate the adaptations that facilitate insect cold tolerance.
Collapse
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Lucie Gerber
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
7
|
Cremonez PSG, Marco HG, Andrello AC, Neves PMOJ, Pinheiro DO. The effect of pyriproxyfen on the concentration of circulating metabolic fuel molecules and chemical elements in the hemolymph of Acraea horta L. (Lepidoptera: Nymphalidae): A quantitative analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104907. [PMID: 34301350 DOI: 10.1016/j.pestbp.2021.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Many pollinating insects expand their niche to adjacent agricultural areas and are, therefore, exposed to chemical insecticides. Acraea horta L. (Lepidoptera: Nymphalidae) is a pollinator butterfly widely distributed in the Southern African region. The objectives of this work were to evaluate carbohydrate, lipid and chemical elements in the hemolymph of A. horta exposed to pyriproxyfen, a juvenile hormone analog (JHA). Last instar larvae (L6: day 1 or day 2) were topically exposed to an aqueous solution of pyriproxyfen (100 μg of the active ingredient per insect) or to diluent (control group). Hemolymph was collected after adult eclosion to determine total carbohydrate and lipid concentrations: in the control group lipids were present in lower concentrations than carbohydrates and there was no significant difference in metabolite levels between sexes; a similar pattern with similar levels were measured in the treated group, except that lipid concentrations in treated males were lower, and carbohydrate concentrations in treated females were lower than the control values. Morphologically intact adult males from treated larvae were subjected to free flight; their hemolymph carbohydrate levels were significantly reduced and did not recover to starting levels in a 30 min rest period following the exhaustive flight episode. To assess the effect of pyriproxyfen on a different stage of development, 48 h old butterflies were treated in the same way as described for the L6 larvae above; hemolymph samples were taken 48 h later for metabolite measurements and for quantification of chemical elements: carbohydrate levels decreased significantly after pyriproxyfen exposure, while lipid levels increased; inorganic elements measured in untreated adults were more abundant in females, with a general decrease in concentration following pyriproxyfen exposure, except for an increase in Fe levels in males and Cl levels in females. The quantitative changes measured in A. horta hemolymph via biochemical and chemical element analyses may indicate distinct physiological interferences beyond the main mode of action of pyriproxyfen on JH activity. In conclusion, the use and quantification of pyriproxyfen should be carefully evaluated prior to application in areas where A. horta and other pollinator species occur.
Collapse
Affiliation(s)
- Paulo S G Cremonez
- Department of Biological Sciences, University of Cape Town - UCT, Private Bag, Rondebosch 7700, South Africa; Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid Km 380, Mail Box 10.011, Londrina, Brazil.
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town - UCT, Private Bag, Rondebosch 7700, South Africa.
| | | | - Pedro M O J Neves
- Department of Agronomy, State University of Londrina - UEL, Rod. Celso Garcia Cid Km 380, Mail Box 10.011, Londrina, Brazil.
| | | |
Collapse
|
8
|
Littler AS, Garcia MJ, Teets NM. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110948. [PMID: 33819503 DOI: 10.1016/j.cbpa.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Cold stress can reduce insect fitness and is an important determinant of species distributions and responses to climate change. Cold tolerance is influenced by genotype and environmental conditions, with factors such as day length and temperature having a particularly strong influence. Recent studies also indicate that diet impacts cold tolerance, but it is unclear whether diet-mediated shifts in cold tolerance are consistent across distinct genotypes. The goal of this study was to determine the extent to which commonly used artificial diets influence cold tolerance in Drosophila melanogaster, and whether these effects are consistent across genetically distinct lines. Specifically, we tested the impact of different fly diets on 1) ability to survive cold stress, 2) critical thermal minimum (CTmin), and 3) the ability to maintain reproduction after cold stress. Experiments were conducted across six isogenic lines from the Drosophila Genetic Reference Panel, and these lines were reared on different fly diets. Cold shock survival, CTmin, and reproductive output pre- and post-cold exposure varied considerably across diet and genotype combinations, suggesting strong genotype by environment interactions shape nutritionally mediated changes in cold tolerance. For example, in some lines cold shock survival remained consistently high or low across diets, while in others cold shock survival ranged from 5% to 75% depending on diet. Ultimately, these results add to a growing literature that cold tolerance is shaped by complex interactions between genotype and environment and inform practical considerations when selecting a laboratory diet for thermal tolerance experiments in Drosophila.
Collapse
Affiliation(s)
- Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| | - Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America; Department of Biology, College of Arts & Sciences, University of Louisiana at Lafayette, Lafayette, LA 70506, United States of America.
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| |
Collapse
|
9
|
Gerber L, Kresse JC, Šimek P, Berková P, Overgaard J. Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110850. [PMID: 33221397 DOI: 10.1016/j.cbpa.2020.110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
Cold acclimation increases cold tolerance of chill-susceptible insects and the acclimation response often involves improved organismal ion balance and osmoregulatory function at low temperature. However, the physiological mechanisms underlying plasticity of ion regulatory capacity are largely unresolved. Here we used Ussing chambers to explore the effects of cold exposure on hindgut KCl reabsorption in cold- (11 °C) and warm-acclimated (30 °C) Locusta migratoria. Cooling (from 30 to 10 °C) reduced active reabsorption across recta from warm-acclimated locusts, while recta from cold-acclimated locusts maintained reabsorption at 10 °C. The differences in transport capacity were not linked to major rearrangements of membrane phospholipid profiles. Yet, the stimulatory effect of two signal transduction pathways were altered by temperature and/or acclimation. cAMP-stimulation increased reabsorption in both acclimation groups, with a strong stimulatory effect at 30 °C and a moderate stimulatory effect at 10 °C. cGMP-stimulation also increased reabsorption in both acclimation groups at 30 °C, but their response to cGMP differed at 10 °C. Recta from warm-acclimated locusts, characterised by reduced reabsorption at 10 °C, recovered reabsorption capacity following cGMP-stimulation at 10 °C. In contrast, recta from cold-acclimated locusts, characterised by sustained reabsorption at 10 °C, were unaffected by cGMP-stimulation. Furthermore, cold-exposed recta from warm-acclimated locusts were insensitive to bafilomycin-α1, a V-type H+-ATPase inhibitor, whereas this blocker reduced reabsorption across cold-exposed recta from cold-acclimated animals. In conclusion, bafilomycin-sensitive and cGMP-dependent transport mechanism(s) are likely blocked during cold exposure in warm-acclimated animals while preserved in cold-acclimated animals. These may in part explain the large differences in rectal ion transport capacity between acclimation groups at low temperature.
Collapse
Affiliation(s)
- Lucie Gerber
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark.
| | - Jean-Claude Kresse
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petra Berková
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Johannes Overgaard
- Zoophysiology, Department of Biosciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Gantz JD, Spong KE, Seroogy EA, Robertson RM, Lee RE. Effects of brief chilling and desiccation on ion homeostasis in the central nervous system of the migratory locust, Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110774. [PMID: 32712084 DOI: 10.1016/j.cbpa.2020.110774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/20/2023]
Abstract
In insects, chilling, anoxia, and dehydration are cues to trigger rapid physiological responses enhancing stress tolerance within minutes. Recent evidence suggests that responses elicited by different cues are mechanistically distinct from each other, though these differences have received little attention. Further, the effects are not well studied in neural tissue. In this study, we examined how brief exposure to desiccation and chilling affect ion homeostatic mechanisms in metathoracic ganglion of the migratory locust, Locusta migratoria. Both desiccation and chilling enhanced resistance to anoxia, though only chilling hastened recovery from anoxic coma. Similarly, only chilling enhanced resistance to pharmacological perturbation of neuronal ion homeostasis. Our results indicate that chilling and desiccation trigger mechanistically distinct responses and, while both may be important for neuronal ion homeostasis, chilling has a larger effect on this tissue. SUMMARY STATEMENT: This is one of few studies to demonstrate the importance of the central nervous system in rapid acclimatory responses in insects.
Collapse
Affiliation(s)
- J D Gantz
- Department of Biology, Miami University, Oxford, OH 45056, USA; Department of Biology and Health Sciences, Hendrix College, Conway, AR 72032, USA.
| | - Kristin E Spong
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Erik A Seroogy
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|