1
|
Herrera-Castillo L, Vallejo-Palma G, Saiz N, Sánchez-Jiménez A, Isorna E, Ruiz-Jarabo I, de Pedro N. Metabolic Rate of Goldfish ( Carassius auratus) in the Face of Common Aquaculture Challenges. BIOLOGY 2024; 13:804. [PMID: 39452113 PMCID: PMC11504095 DOI: 10.3390/biology13100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
This study examined the metabolic rate (MO2, oxygen consumption) of goldfish (Carassius auratus) under normal management conditions in aquaculture. Using an intermittent respirometry system, we assessed daily variations and the effects of feeding, handling, temperature increase, and anesthetics. MO2 exhibited a daily rhythm, with higher values during day. Feeding to satiety produced a 35% increase in MO2 compared to fasted animals, with a maximum peak after 3 h and returning to baseline after 7 h. Handling stress (5 min) produced a 140% MO2 peak (from 180 to 252 mg O2 kg-1 h-1), returning to the routine MO2 after 2.5 h. An increase in water temperature (+0.1 °C min-1) up to 30 °C caused MO2 to peak at 200% after 2.5 h from the start of the temperature increase. The use of common anesthetics in aquaculture (MS-222, 2-phenoxyethanol and clove oil in deep anesthesia concentration) affects MO2 during the first few minutes after anesthetic recovery, but also during the following 4 h. It can be concluded that the metabolic rate is a good indicator of the goldfish's response to aquaculture practices involving energy expenditure and stress. Thus, intermittent respirometry is a valuable non-invasive tool for understanding and improving fish welfare in aquaculture.
Collapse
Affiliation(s)
- Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Germán Vallejo-Palma
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Abel Sánchez-Jiménez
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Ignacio Ruiz-Jarabo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
- Department of Aquaculture, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11519 Puerto Real, Cadiz, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| |
Collapse
|
2
|
Reis TDS, Araújo DBD, Paz CAD, Santos RG, Barbosa ADS, Souza LVD, Deiga YDS, Garcia VLDO, Barbosa GB, Rocha LLD, Hamoy M. Etomidate as an anesthetic in Colossoma macropomum: Behavioral and electrophysiological data complement each other as a tool to assess anesthetic safety. PLoS One 2024; 19:e0305093. [PMID: 39106269 DOI: 10.1371/journal.pone.0305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 08/09/2024] Open
Abstract
The use of anesthetic agents in the management of fish in fish farming or ornamental fish breeding aims to minimize stress and promote animal welfare. Therefore, this study aims to investigate behavioral, electrocardiographic, and ventilatory characteristics of tambaquis exposed to anesthetic baths with etomidate. The study was conducted with juvenile tambaquis (27.38 ± 3.5g) n = 99, at etomidate concentrations of 2-4 mg.L -1, analyzing induction and anesthetic recovery behavior (experiment I), electrocardiogram (experiment II), and opercular movement (experiment III). Fish exposed to high concentrations of etomidate reached the stage of general anesthesia faster, however, the recovery time was longer, characterizing a dose-dependent relationship. Cardiorespiratory analyzes demonstrated a reduction in heart rate (69.19%) and respiratory rate (40.70%) depending on the concentration of etomidate used during anesthetic induction. During the recovery period, there was cardiorespiratory reversibility to normality. Therefore, etomidate proved to be safe as an anesthetic agent for this species at concentrations of 2 to 3 mg.L -1 for short-term anesthesia, but at higher doses the animals showed slow reversibility of anesthesia in a gradual manner and without excitability. The hemodynamic effect due to the rapid decrease in heart rate includes a negative factor of using higher concentrations of etomidate for Colossome macropomum anesthesia.
Collapse
Affiliation(s)
- Thaysa de Sousa Reis
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Clarissa Araújo da Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Rodrigo Gonçalves Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Anara de Sousa Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Vera Louzeiro de Oliveira Garcia
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Gabriela Brito Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Lucas Lima da Rocha
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
3
|
Chuang HJ, Chiu L, Yan JJ, Chang CY, Tang YH, Chou MY, Yu HT, Hwang PP. Responses of medaka (Oryzias latipes) ammonia production and excretion to overcome acidified environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130539. [PMID: 36502720 DOI: 10.1016/j.jhazmat.2022.130539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic acidification of water is an on-going environmental disaster for freshwater fishes. Fishes rely on ammonia excretion to eliminate the excess acid and mitigate the harmful effects; however, it remains largely unknown how ammoniagenesis occurs and is coordinated with ammonia excretion upon acidic stress. Medaka (Oryzias latipes) was used to examine the effects of acidic stress on ammonia production and excretion. We reveal an undiscovered ammonia-producing cell type that is rich in glutaminase (GLS) and located adjacent to the ammonia-excreting ionocytes, Na+/H+ exchanger (NHE) cells, in the gills. The gills, comparing with other ammoniagenetic organs, is the quickest to respond to the acidic stress by triggering GLS-dependent ammonia production. The unique division of labor between GLS and NHE cells in the gills allows medaka to simultaneously upregulate GLS activity and ammonia excretion shortly after exposure to acidic environments. Pharmacological experiment with a GLS inhibitor abolished the activated ammonia excretion, further suggesting the essential role of the unique feature in the responses to acidic stress. Our study shades light on a novel physiological mechanism to timely and efficiently mitigate adverse effects of acidification, providing a new way to assess the impact of on-going environmental acidification on fish.
Collapse
Affiliation(s)
- Hsin-Ju Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Yung Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Hsin Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hon-Tsen Yu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
4
|
Ruiz-Jarabo I, Partida B, Page M, Madera D, Saiz N, Alonso-Gómez A, Herrera-Castillo L, Isorna E, Alonso-Gómez ÁL, Valenciano AI, de Pedro N, Saez J, Delgado MJ. Economic Improvement of Artisanal Fishing by Studying the Survival of Discarded Plectorhinchus mediterraneus. Animals (Basel) 2022; 12:3423. [PMID: 36496945 PMCID: PMC9741162 DOI: 10.3390/ani12233423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
Europe calls for the end to fisheries discards, which means bringing all caught fish (subject to minimum sizes or quotas) to land. This decision is beneficial to the ecosystem, since it forces the selectivity of the fishing gears to improve. However, artisanal fishermen find themselves in a vulnerable situation where their subsistence depends on catches with small profit margins. An exemption to this landing obligation exists, as it is also ruled that those animals whose survival is scientifically guaranteed may be returned to the sea. Here we study the survival of Plectorhinchus mediterraneus captured by hookline and gillnet, as well as their physiological recovery. Survival exceeds 93% in both cases. The physiological assessment of primary (cortisol) and secondary (energy mobilization, acid-base and hydromineral balance, and immune system) stress responses indicates that surviving animals are able to recover after fishing. Thus, we propose the optimal size of capture of this species to achieve greater economic benefit. For this, we rely on the prices according to size in recent years, as well as on the growth curves of the species. In this way, by releasing fish of less than 1 kg, the current benefits could be multiplied between 2.3 and 9.6 times. This pilot study lays the groundwork for regulating artisanal fisheries through scientific data related to survival of discards along with information on the sale prices.
Collapse
Affiliation(s)
- Ignacio Ruiz-Jarabo
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Blanca Partida
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - María Page
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Diego Madera
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Nuria Saiz
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Aitana Alonso-Gómez
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Lisbeth Herrera-Castillo
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Esther Isorna
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Ángel L. Alonso-Gómez
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Ana I. Valenciano
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Nuria de Pedro
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| | - Jorge Saez
- SolDeCocos (Society for the Development of Coastal Communities), 41003 Seville, Spain
| | - Maria J. Delgado
- Departament of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
5
|
Acute Stress in Lesser-Spotted Catshark (Scyliorhinus canicula Linnaeus, 1758) Promotes Amino Acid Catabolism and Osmoregulatory Imbalances. Animals (Basel) 2022; 12:ani12091192. [PMID: 35565621 PMCID: PMC9105869 DOI: 10.3390/ani12091192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In catsharks (Scyliorhinus canicula), air exposure induces amino acid catabolism altogether with osmoregulatory imbalances. This study describes a novel NHE isoform being expressed in gills that may be involved in ammonium excretion. Abstract Acute-stress situations in vertebrates induce a series of physiological responses to cope with the event. While common secondary stress responses include increased catabolism and osmoregulatory imbalances, specific processes depend on the taxa. In this sense, these processes are still largely unknown in ancient vertebrates such as marine elasmobranchs. Thus, we challenged the lesser spotted catshark (Scyliorhinus canicula) to 18 min of air exposure, and monitored their recovery after 0, 5, and 24 h. This study describes amino acid turnover in the liver, white muscle, gills, and rectal gland, and plasma parameters related to energy metabolism and osmoregulatory imbalances. Catsharks rely on white muscle amino acid catabolism to face the energy demand imposed by the stressor, producing NH4+. While some plasma ions (K+, Cl− and Ca2+) increased in concentration after 18 min of air exposure, returning to basal values after 5 h of recovery, Na+ increased after just 5 h of recovery, coinciding with a decrease in plasma NH4+. These changes were accompanied by increased activity of a branchial amiloride-sensitive ATPase. Therefore, we hypothesize that this enzyme may be a Na+/H+ exchanger (NHE) related to NH4+ excretion. The action of an omeprazole-sensitive ATPase, putatively associated to a H+/K+-ATPase (HKA), is also affected by these allostatic processes. Some complementary experiments were carried out to delve a little deeper into the possible branchial enzymes sensitive to amiloride, including in vivo and ex vivo approaches, and partial sequencing of a nhe1 in the gills. This study describes the possible presence of an HKA enzyme in the rectal gland, as well as a NHE in the gills, highlighting the importance of understanding the relationship between acute stress and osmoregulation in elasmobranchs.
Collapse
|
6
|
Cabrera-Busto J, Mancera JM, Ruiz-Jarabo I. Cortisol and Dexamethasone Mediate Glucocorticoid Actions in the Lesser Spotted Catshark (Scyliorhinus canicula). BIOLOGY 2021; 11:biology11010056. [PMID: 35053054 PMCID: PMC8772811 DOI: 10.3390/biology11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary For the first time, glucocorticoid actions of corticosteroids are evidenced in vivo and ex vivo in sharks, highlighting the importance of carbohydrate metabolism in situations of high-energy expenditure in this taxonomical group. Long-term (7 days) in vivo administration of dexamethasone (DEX, a synthetic glucocorticoid) decreased 1α-hydroxycorticosterone (1α-OHB, the main corticosteroid hormone in sharks), while also modified carbohydrates metabolism in liver and white muscle. Short-term (1 to 5 h) ex vivo incubation of liver and muscle explants with cortisol (corticosteroid not present in sharks) and DEX revealed glucose secretion mediated by glucocorticoid receptors (GR), as seen by the employment of mifepristone (a GR inhibitor). Abstract Corticosteroids are hormones produced in vertebrates exerting gluco- and mineralocorticoid actions (GC and MC) mediated by specific receptors (GR and MR, respectively). In elasmobranchs, the major circulating corticosteroid is the 1α-hydroxycorticosterone (1α-OHB). This hormone acts as a MC, but to date its role as a GC has not been established. As there is no 1α-OHB standard available, here we employed a set of in vivo and ex vivo approaches to test GC actions of other corticosteroids in the lesser spotted catshark (Scyliorhinus canicula). Dexamethasone (DEX, a synthetic corticosteroid) slow-release implants decreased plasma 1α-OHB levels after 7 days, and modified carbohydrates metabolism in liver and white muscle (energy stores and metabolic enzymes). In addition, ex vivo culture of liver and white muscle explants confirmed GC actions of corticosteroids not naturally present in sharks (cortisol and DEX) by increasing glucose secretion from these tissues. Dose–response curves induced by cortisol and DEX, altogether with the use of specific GR inhibitor mifepristone, confirmed the involvement of GR mediating glucose secretion. This study highlights the influence of corticosteroids in the glucose balance of S. canicula, though the role of 1α-OHB as a GC hormone in sharks should be further confirmed.
Collapse
Affiliation(s)
- Juncal Cabrera-Busto
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Juan M. Mancera
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Ignacio Ruiz-Jarabo
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
- Department of Physiology, Faculty of Biological Sciences, University Complutense Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913944984
| |
Collapse
|
7
|
Rohonczy J, O'Dwyer K, Rochette A, Robinson SA, Forbes MR. Meta-analysis shows environmental contaminants elevate cortisol levels in teleost fish - Effect sizes depend on contaminant class and duration of experimental exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149402. [PMID: 34399351 DOI: 10.1016/j.scitotenv.2021.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Alicia Rochette
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Stacey A Robinson
- National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Physiology: An Important Tool to Assess the Welfare of Aquatic Animals. BIOLOGY 2021; 10:biology10010061. [PMID: 33467525 PMCID: PMC7830356 DOI: 10.3390/biology10010061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Ensuring a good quality of life for animals is a matter of concern. Welfare assessment has been quite well developed for many terrestrial species, but it is less well characterized for aquatic animals. Classic methodologies, such as behavioral observation, seem unable to improve the wellbeing of aquatic animals when used alone, mainly due to the large number of species and the difficulty to obtain comparative results among taxa. For this reason, it is necessary to identify more methodologies that may be common to the main aquatic taxa of interest to humans: Fish, cephalopods, and crustaceans. Here we present a physiological framework for these taxa as a proxy to evaluate aquatic animal welfare. Physiology is a useful tool in this regard, since animals maintain their homeostasis in a range of values determined for each parameter. Changes occur depending on the type and degree of stress to which animals are subjected. Therefore, understanding the physiology of stress can offer information that helps improve the welfare of aquatic animals. Abstract The assessment of welfare in aquatic animals is currently under debate, especially concerning those kept by humans. The classic concept of animal welfare includes three elements: The emotional state of the organism (including the absence of negative experiences), the possibility of expressing normal behaviors, and the proper functioning of the organism. While methods for evaluating their emotions (such as fear, pain, and anguish) are currently being developed for aquatic species and understanding the natural behavior of all aquatic taxa that interact with humans is a task that requires more time, the evaluation of internal responses in the organisms can be carried out using analytical tools. This review aims to show the potential of the physiology of crustaceans, cephalopods, elasmobranchs, teleosts, and dipnoans to serve as indicators of their wellbeing. Since the classical methods of assessing welfare are laborious and time-consuming by evaluation of fear, pain, and anguish, the assessment may be complemented by physiological approaches. This involves the study of stress responses, including the release of hormones and their effects. Therefore, physiology may be of help in improving animal welfare.
Collapse
|