1
|
Saito T, Espe M, Mommens M, Bock C, Fernandes JM, Skjærven KH. Altered spawning seasons of Atlantic salmon broodstock transcriptionally and epigenetically influence cell cycle and lipid-mediated regulations in their offspring. PLoS One 2025; 20:e0317770. [PMID: 39992963 PMCID: PMC11849821 DOI: 10.1371/journal.pone.0317770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Manipulating spawning seasons of Atlantic salmon (Salmo salar) is a common practice to facilitate year-round harvesting in salmon aquaculture. This process involves adjusting water temperature and light regime to control female broodstock maturation. However, recent studies have indicated that altered spawning seasons can significantly affect the nutritional status and growth performance of the offspring. Therefore, gaining a deeper understanding of the biological regulations influenced by these alterations is crucial to enhance the growth performance of fish over multiple generations. In this study, we investigated omics data from four different spawning seasons achieved through recirculating aquaculture systems (RAS) and sea-pen-based approaches. In addition to the normal spawning season in November (sea-pen), three altered seasons were designated: off-season (five-month advance, RAS), early season (two-month advance, sea-pen), and late season (two-month delay, sea-pen). We conducted comprehensive gene expression and DNA methylation analysis on liver samples collected from the start-feeding larvae of the next generation. Our results revealed distinct gene expression and DNA methylation patterns associated with the altered spawning seasons. Specifically, offspring from RAS-based off-season exhibited altered lipid-mediated regulation, while those from sea-pen-based early and late seasons showed changes in cellular processes, particularly in cell cycle regulation when compared to the normal season. The consequences of our findings are significant for growth and health, potentially providing information for developing valuable tools for assessing growth potential and optimizing production strategies in aquaculture.
Collapse
Affiliation(s)
| | - Marit Espe
- Institute of Marine Research, Bergen, Norway
| | | | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
2
|
Rbbani G, Murshed R, Siriyappagouder P, Sharko F, Nedoluzhko A, Joshi R, Galindo-Villegas J, Raeymaekers JAM, Fernandes JMO. Embryonic temperature has long-term effects on muscle circRNA expression and somatic growth in Nile tilapia. Front Cell Dev Biol 2024; 12:1369758. [PMID: 39149515 PMCID: PMC11324953 DOI: 10.3389/fcell.2024.1369758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Embryonic temperature has a lasting impact on muscle phenotype in vertebrates, involving complex molecular mechanisms that encompass both protein-coding and non-coding genes. Circular RNAs (circRNAs) are a class of regulatory RNAs that play important roles in various biological processes, but the effect of variable thermal conditions on the circRNA transcriptome and its long-term impact on muscle growth plasticity remains largely unexplored. To fill this knowledge gap, we performed a transcriptomic analysis of circRNAs in fast muscle of Nile tilapia (Oreochromis niloticus) subjected to different embryonic temperatures (24°C, 28°C and 32°C) and then reared at a common temperature (28°C) for 4 months. Nile tilapia embryos exhibited faster development and subsequently higher long-term growth at 32°C compared to those reared at 28°C and 24°C. Next-generation sequencing data revealed a total of 5,141 unique circRNAs across all temperature groups, of which 1,604, 1,531, and 1,169 circRNAs were exclusively found in the 24°C, 28°C and 32°C groups, respectively. Among them, circNexn exhibited a 1.7-fold (log2) upregulation in the 24°C group and a 1.3-fold (log2) upregulation in the 32°C group when compared to the 28°C group. Conversely, circTTN and circTTN_b were downregulated in the 24°C groups compared to their 28°C and 32°C counterparts. Furthermore, these differentially expressed circRNAs were found to have multiple interactions with myomiRs, highlighting their potential as promising candidates for further investigation in the context of muscle growth plasticity. Taken together, our findings provide new insights into the molecular mechanisms that may underlie muscle growth plasticity in response to thermal variation in fish, with important implications in the context of climate change, fisheries and aquaculture.
Collapse
Affiliation(s)
- Golam Rbbani
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Riaz Murshed
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Fedor Sharko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Paleogenomics Laboratory, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| |
Collapse
|
3
|
Bogevik AS, Krasnov A, Burgerhout E, Berge K, Martinsen I, Hoel E, Erik Dalva L, Kilane S, Eriksen Vold J, Aarhus B, Østbye TKK, Rosenlund G, Morken T. Effect of prolonged feeding of broodstock diet with increased inclusion of essential n-3 fatty acids on maturing and spawning performance in 3-year-old Atlantic salmon (Salmo salar). Gen Comp Endocrinol 2024; 348:114434. [PMID: 38142842 DOI: 10.1016/j.ygcen.2023.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.
Collapse
Affiliation(s)
| | | | | | | | | | - Eirik Hoel
- Skretting, P.O. Box 319, 4002 Stavanger, Norway
| | | | | | | | | | | | - Grethe Rosenlund
- Skretting Aquaculture Innovation, P.O. Box 48, 4001 Stavanger, Norway
| | - Thea Morken
- Skretting Aquaculture Innovation, P.O. Box 48, 4001 Stavanger, Norway
| |
Collapse
|
4
|
Metabolic and molecular signatures of improved growth in Atlantic salmon ( Salmo salar) fed surplus levels of methionine, folic acid, vitamin B 6 and B 12 throughout smoltification. Br J Nutr 2022; 127:1289-1302. [PMID: 34176547 DOI: 10.1017/s0007114521002336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A moderate surplus of the one carbon (1C) nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing saltwater period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient–gene interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon 6 weeks prior to smoltification until 3 months after saltwater transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed lower expression of genes related to translation, growth and amino acid metabolisation in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilisation for protein synthesis, and increased methionine metabolisation in polyamine and redox homoeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient–gene interactions fundamental for improved growth capacity through better amino acid utilisation for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.
Collapse
|
5
|
Lee DW, Choi YU, Park HS, Park YS, Choi CY. Effect of low pH and salinity conditions on the antioxidant response and hepatocyte damage in juvenile olive flounder Paralichthys olivaceus. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105562. [PMID: 35134638 DOI: 10.1016/j.marenvres.2022.105562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Climate change due to increasing CO2 emissions results in the increase in water temperatures, which is accompanied by the decrease in pH and salinity levels of the ocean. Ocean acidification reflects the gradual pH reduction due to changes in the carbon chemistry, which is caused by the increase in anthropogenic CO2 emissions. The subsequent changes in the water temperatures and carbon chemistry of the oceans affect the survival and distribution of aquatic animals. In this study, we analyzed the levels of cortisol, superoxide dismutase, catalase, and caspase-3 in the plasma of juvenile olive flounder Paralichthys olivaceus under combined hyposalinity and acidification. To evaluate the physiological response to these changes, the superoxide dismutase activity and apoptosis were analyzed in the liver cells. Hyposalinity caused oxidative stress and cell damage, while also activating the antioxidant system. Environmental acidification affected the stress response and antioxidant mechanism of P. olivaceus in the early stage of acclimation but did not appear to exceed hyposalinity stress. These findings suggest that a hyposaline environment may be a stronger environmental stressor than an acidifying environment for P. olivaceus, and will help understand the capacity of P. olivaceus to cope with expected future ocean acidification.
Collapse
Affiliation(s)
- Dae-Won Lee
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Young-Ung Choi
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Heung-Sik Park
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
| | - Young-Su Park
- Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
6
|
Kumkhong S, Marandel L, Plagnes-Juan E, Veron V, Panserat S, Boonanuntanasarn S. Glucose injection into the yolk influences intermediary metabolism in adult Nile tilapia fed with high levels of carbohydrates. Animal 2021; 15:100347. [PMID: 34455154 DOI: 10.1016/j.animal.2021.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Nutritional programming is a concept proposed to be applied in the field of fish nutrition to improve the use of new diets in aquaculture. This study aimed to investigate for the first time the effects of a glucose injection into the yolk at the alevin stage on intermediary metabolism and growth in adult Nile tilapia (Oreochromis niloticus) at 32-37 weeks later in the life. The early stimulus was performed through direct microinjection of 2 M glucose into yolk sacs of Nile tilapia alevin. Subsequently, in adult tilapia, the long-term effects of glucose stimulus on growth performance, blood metabolites, chemical composition in the liver and muscle, expression of genes involved in glucose transport and metabolism (glycolysis and gluconeogenesis) and related pathways (amino acid catabolism and lipogenesis) were investigated. Our results showed that, even though early glucose injection had no effect on growth performance in adult fish, very few significant effects on glucose metabolism were observed. Furthermore, to evaluate the potential metabolic programming after a dietary challenge, a 2 × 2 factorial design with two early stimuli (0.85% NaCl or 2 M glucose) and two different dietary carbohydrate intakes (medium-carbohydrate diet, CHO-M; high-carbohydrate diet, CHO-H) was performed between weeks 33 and 37. As expected, compared with the CHO-M diet, the CHO-H diet led to decreased growth performance, higher glyceamia and triglyceridemia, higher glycogen and lipid levels in the liver as well as down-regulation of gluconeogenesis and amino acid catabolism gene expressions. More interestingly, although early glucose injection had no significant effect on growth performance, it enhanced the capacities for lipogenesis, glycolysis and gluconeogenesis, particularly in fish that were fed the CHO-H diet. Thus, the nutritional programming of tilapia linked to glucose injection into the yolk of alevins is always visible at the adult stage albeit less intense than what we previously observed in juvenile.
Collapse
Affiliation(s)
- S Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - L Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - E Plagnes-Juan
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - V Veron
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - S Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - S Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|