1
|
Rizky D, Byun JH, Mahardini A, Fukunaga K, Udagawa S, Pringgenies D, Takemura A. Two pathways regulate insulin-like growth factor genes in the brain and liver of the tropical damselfish Chrysiptera cyanea: A possible role for melatonin in the actions of growth and thyroid hormones. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111679. [PMID: 38876439 DOI: 10.1016/j.cbpa.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.
Collapse
Affiliation(s)
- Dinda Rizky
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Angka Mahardini
- Marine Science Study Program, Faculty of Science and Agricultural Technology, Universitas Muhammadiyah Semarang, Jl. Kedungmundu No.18, Semarang 50273, Indonesia
| | - Kodai Fukunaga
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Shingo Udagawa
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Delianis Pringgenies
- Department of Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto S.H., Tembalang, Semarang 50275, Indonesia
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
2
|
Jenkins LE, Medeiros LR, Cervantes DL, Nagler JJ, Pierce AL. Effects of post-spawning ration restriction on reproductive development and the growth hormone/insulin-like growth factor-1 axis in female rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111510. [PMID: 37652290 DOI: 10.1016/j.cbpa.2023.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In iteroparous female salmonids, the growth and reproductive endocrine axes interact during the period after spawning. Energy depletion due to pre-spawn fasting, migration, and ovarian development must be restored, and the next reproductive cycle is initiated in consecutively maturing fish. In the natural environment, food availability is often limited during the post-spawn period. To investigate the growth and reproductive endocrinology of the post-spawn period, we sampled female rainbow trout over the 30 weeks following their first spawning. Fish were fasted for 2 months prior to spawning, then fed a standard or a restricted ration. Analysis was confined to reproductive fish. Plasma estradiol-17β decreased during the 8 weeks following spawning and then began increasing in both ration groups and was lower in feed-restricted versus standard ration fish from 8 weeks onward. Plasma insulin-like growth factor-1 increased over the same period and then remained constant in both ration groups and was lower in feed-restricted versus standard ration fish from week 8 to week 30. Plasma growth hormone decreased following spawning in standard ration fish and became elevated in feed-restricted versus standard ration fish at 20- and 30-weeks post-spawn. Growth rates, condition factor, and muscle lipid levels were higher in standard ration versus feed-restricted fish within 2-4 weeks after spawning. These results suggest that two phases occurred during the post-spawn period: recovery from spawning and restoration of energy reserves over weeks 0 to 8, followed by adjustment of the growth and reproductive endocrine axes to ration level over weeks 8 to 30.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Diana L Cervantes
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA; Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| |
Collapse
|
3
|
Jenkins LE, Medeiros LR, Graham ND, Hoffman BM, Cervantes DL, Hatch DR, Nagler JJ, Pierce AL. Feeding after spawning and energy balance at spawning are associated with repeat spawning interval in steelhead trout. Gen Comp Endocrinol 2023; 332:114181. [PMID: 36455641 DOI: 10.1016/j.ygcen.2022.114181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Consecutive and skip repeat spawning (1- or ≥2-year spawning interval) life histories commonly occur in seasonally breeding iteroparous fishes. Spawning interval variation is driven by energetic status and impacts fisheries management. In salmonids, energetic status (either absolute level of energy reserves or the rate of change of energy reserves, i.e., energy balance) is thought to determine reproductive trajectory during a critical period ∼1 year prior to initial spawning. However, information on repeat spawners is lacking. To examine the timing and the aspects of energetic status that regulate repeat spawning interval, female steelhead trout (Oncorhynchus mykiss) were fasted for 10 weeks after spawning and then fed ad libitum and compared to ad libitum fed controls. Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels were measured to assess long-term energy balance. Plasma estradiol levels showed that some fish in both groups initiated a consecutive spawning cycle. In fasted fish, GH was lower at spawning in consecutive versus skip spawners. In consecutive spawners, GH was higher at spawning in fed versus fasted fish. These results suggest that fish with a less negative energy balance at spawning initiated reproductive development in the absence of feeding, but that feeding during the post-spawning period enabled initiation of reproduction in some fish with a more negative energy balance at spawning. Thus, both energy balance at spawning and feeding after spawning regulated reproductive schedules. These results show that the critical period model of salmonid maturation applies to regulation of repeat spawning, and that the reproductive decision window extends into the first 10 weeks after spawning.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Neil D Graham
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - Brian M Hoffman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Diana L Cervantes
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Douglas R Hatch
- Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA; Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| |
Collapse
|
4
|
Mohammadzadeh S, Ahmadifar E, Masoudi E, Milla S, El-Shall NA, Alagawany M, Emran TB, Michalak I, Dhama K. Applications of recombinant proteins in aquaculture. AQUACULTURE 2022; 561:738701. [DOI: 10.1016/j.aquaculture.2022.738701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Mennigen JA, Magnan J, Touma K, Best C, Culbert BM, Bernier NJ, Gilmour KM. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol Cell Endocrinol 2022; 554:111709. [PMID: 35787462 DOI: 10.1016/j.mce.2022.111709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) develop social hierarchies when competing for resources in a constrained environment. Among the physiological consequences of social status are changes in organismal energy metabolism, which generally favour anabolic pathways in dominant fish and catabolic pathways in subordinate fish. The somatotropic axis is an important regulator of metabolism and growth that could be involved in mediating metabolic changes in response to social status in juvenile rainbow trout. Here we used juvenile trout housed either in dyads or individually (sham controls) to determine whether social status changes indices of somatotropic axis function. Although pituitary growth hormone expression (gh1 and gh2) did not differ among groups, circulating growth hormone (GH) increased ∼12-fold in subordinate fish compared to sham and dominant fish. Social status caused consistent differential expression of GH receptor paralogues in liver and muscle, two principal target tissues of GH. Compared to dominant and/or sham fish, ghra paralogue expression (ghra1 and ghra2) was lower, while ghrb1 expression was higher in subordinate fish. Across tissues, ghra paralogue expression was generally positively correlated with expression of insulin growth factors (igf1, igf2), while ghrb1 expression was positively correlated with transcript abundance of hormone sensitive lipase (hsl1). Because igf and hsl expression are subject to context-dependent GH control in rainbow trout, these results suggest that increased circulating GH in conjunction with differential expression of ghr paralogues may translate into prioritization of downstream catabolic lipolytic pathways in subordinate rainbow trout. These findings support a social context-dependent role for GH signalling in mediating metabolic changes in juvenile rainbow trout.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Julianne Magnan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenan Touma
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
6
|
Mukherjee D, Ferreira NGC, Saha NC. Effects of 2,4,6-Trichlorophenol on Clarias batrachus: a biomarkers approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47011-47024. [PMID: 35175533 PMCID: PMC9232441 DOI: 10.1007/s11356-022-19213-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
2,4,6-Trichlorophenol (2,4,6-TCP) is a common waste among the resulting chlorophenols generated in the production of common products classified as an extremely toxic, mutagenic, carcinogenic and highly persistent xenobiotic in the environment. To evaluate the impact of 2,4,6-TCP in aquatic systems, the catfish species Clarias batrachus has been selected to test its toxicity due to its high market value and consumption in India. Here is presented the impact of this compound on different physiological parameters of fish: haematological parameters (haemoglobin, total erythrocyte count, total leucocyte count and mean corpuscular haemoglobin), biochemical parameters (total serum protein and total serum glucose), growth and reproductive parameters (condition factor, hepatosomatic index, maturity index, specific growth rate, growth hormone, 17β-estradiol and testosterone), exposed to two concentrations of 2,4,6-TCP (0.5 mg/L and 1 mg/L - 1/10th and 1/20th of the LC50) for a period of 15, 30 and 45 days. The results showed that C. batrachus even when exposed to the lower concentration (0.5 mg/L) for the shortest time (15 days) negatively impacted the organism in all the assessed parameters. This was highlighted by the Integrated Biomarker Response index (IBR), showing worse scores for the treatments (up to 20 × worse than the control). This work highlights the importance of continued research on the impact of 2,4,6-TCP, on an important commercial, supported by the high environmental persistence of this compound that can reach the same range of tested concentrations.
Collapse
Affiliation(s)
- Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Mera Aptair, Balurghat, Dakshin Dinajpur-733126, West Bengal, India
| | - Nuno G C Ferreira
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
- CIIMAR, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| | - Nimai Chandra Saha
- The University of Burdwan, Fishery and Ecotoxicology Research Laboratory, Vice Chancellor's Research Group, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| |
Collapse
|
7
|
Izutsu A, Tadokoro D, Habara S, Ugachi Y, Shimizu M. Evaluation of circulating insulin-like growth factor (IGF)-I and IGF-binding proteins as growth indices in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2022; 320:114008. [PMID: 35219685 DOI: 10.1016/j.ygcen.2022.114008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Circulating insulin-like growth factor (IGF)-I has been proposed as a growth index in several teleosts, including salmonids, and its level in circulation is stabilized by multiple IGF-binding proteins (IGFBPs). Three IGFBPs, IGFBP-2b, -1a, and -1b, are consistently detected in salmonid blood and are suggested to be indices of positive or negative growth, although their applicability to rainbow trout (Oncorhynchus mykiss) is unclear. The present study examined the usefulness of IGFBPs along with IGF-I as a physiological indicator of growth rate in rainbow trout through a rearing experiment. Two groups of underyearling rainbow trout were pit-tagged and either fed or fasted for 33 days. A third group was fasted for 22 days, followed by refeeding for 11 days. Serum IGF-I levels were reduced after fasting for 22 days, but refeeding did not retore its levels to those of the fed control. Nevertheless, there was a positive relationship between serum IGF-I levels and individual growth rates over 33 days of experimentation, confirming its validity as a growth index. Ligand blotting using labeled human IGF-I revealed two IGFBP bands at 43 and 32 kDa, which corresponded to IGFBP-2b and an unidentified form, respectively. In contrast, bands corresponding to IGFBP-1a and -1b, which usually increase after fasting, were hardly detected, even in the fasted fish. The responses of circulating IGFBP-2b to fasting and refeeding were similar to those of circulating IGF-I and positively correlated with growth rate and IGF-I levels. The intensity of the serum 32-kDa IGFBP band was higher in constantly fed fish than in the fasted fish; however, its correlation with growth rate was weaker than those of IGF-I and IGFBP-2b. The present study shows that IGF-I and IGFBP-2b can be used as growth indices for rainbow trout. In contrast, circulating IGFBP-1a and -1b may not serve as negative growth indices in rainbow trout under regular aquaculture conditions because they are rarely detected by ligand blotting or respond to fasting/refeeding.
Collapse
Affiliation(s)
- Ayaka Izutsu
- School of Fisheries Sciences, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Daiji Tadokoro
- FRD Japan, Co., Kazusa Kamatari 3-9-13, Kisarazu, Chiba 292-0818, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|