1
|
Lucu Č, Turner LM. Ionic regulatory strategies of crabs: the transition from water to land. Front Physiol 2024; 15:1399194. [PMID: 39397859 PMCID: PMC11467477 DOI: 10.3389/fphys.2024.1399194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024] Open
Abstract
Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.
Collapse
Affiliation(s)
- Čedomil Lucu
- Croatian Academy of Sciences and Arts, Department of Natural Sciences, Zagreb, Croatia
| | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
2
|
El-Tahan HM, Elmasry ME, Madian HA, Alhimaidi AR, Kim IH, Park JH, El-Tahan HM. Sucralose Influences the Productive Performance, Carcass Traits, Blood Components, and Gut Microflora Using 16S rRNA Sequencing of Growing APRI-Line Rabbits. Animals (Basel) 2024; 14:1925. [PMID: 38998037 PMCID: PMC11240599 DOI: 10.3390/ani14131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigated how sucralose influenced rabbit intestine and caecal microbial activity, blood parameters, growth performance, carcass characteristics, and digestibility. In total, 160 5-week-old rabbits from the APRI line weighing 563.29 gm were randomly assigned to four experimental groups with four replicates-5 males and 5 females in each. Four experimental groups were used, as follows: SUC1, SUC2, and SUC3 got 75, 150, and 300 mg of sucralose/kg body weight in water daily, while the control group ate a basal diet without supplements. The results showed that both the control and SUC1 groups significantly (p < 0.05) increased daily weight gain and final body weight. Sucralose addition significantly improved feed conversion ratio (p < 0.05) and decreased daily feed intake (gm/d). The experimental groups do not significantly differ in terms of mortality. Furthermore, nutrient digestibility was not significantly affected by sucralose treatment, with the exception of crud protein digestion, which was significantly reduced (p < 0.05). Additionally, without altering liver or kidney function, sucralose administration dramatically (p < 0.05) decreased blood serum glucose and triglyceride levels while increasing total lipids, cholesterol, and malonaldehyde in comparison to the control group. Furthermore, the addition of sucrose resulted in a significant (p < 0.05) increase in the count of total bacteria, lactobacillus, and Clostridium spp., and a decrease in the count of Escherichia coli. Further analysis using 16S rRNA data revealed that sucralose upregulated the expression of lactobacillus genes but not that of Clostridium or E. Coli bacteria (p < 0.05). Therefore, it could be concluded that sucralose supplementation for rabbits modifies gut microbiota and boosts beneficial bacteria and feed conversion ratios without side effects. Moreover, sucralose could decrease blood glucose and intensify hypercholesterolemia and should be used with caution for human consumption.
Collapse
Affiliation(s)
- Hatem M El-Tahan
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza 12611, Egypt
- Postdoc at the Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohamad Elsayed Elmasry
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza 12611, Egypt
| | - H A Madian
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza 12611, Egypt
| | - Ahmad R Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae Hong Park
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea
| | - Hossam M El-Tahan
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza 12611, Egypt
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Nishimura H, Wang Y, Elhussiny MZ, Tran PV, Haraguchi S, Cockrem JF, Bungo T, Furuse M, Chowdhury VS. Central administration of neuropeptide Y reduces the cellular heat stress response and may enhance spleen antioxidative functions in heat-exposed chicks. Neurosci Lett 2022; 784:136749. [PMID: 35728682 DOI: 10.1016/j.neulet.2022.136749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Previously it was found that mRNA expression of neuropeptide Y (NPY) was increased in the chicken brain under heat stress. NPY has also been reported as an anti-stress factor to regulate brain functions in heat-exposed chicks. However, to the best of our knowledge, there is no report on the action of central NPY in the immune organs under heat stress. The aim of this study was to examine whether central injection of NPY can regulate heat stress response in the spleen and liver. After intracerebroventricular (ICV) injection of NPY, chicks were exposed to control thermoneutral temperature (CT: 30 ± 1 °C) or high ambient temperature (HT: 35 ± 1 °C) chambers for 60 min. Central injection of NPY caused lowering in rectal temperature under CT, but not under HT. Moreover, ICV injection of NPY caused a significant lower mRNA expression of heat-shock protein-70 and higher expression of glutathione synthase in the spleen, but not liver. Furthermore, plasma uric acid concentrations were significantly increased by the ICV injection of NPY in chicks under HT. These results indicate that brain NPY may contribute to attenuate the intracellular heat stress response and enhance antioxidative status in the immune organ, spleen in chicks.
Collapse
Affiliation(s)
- Haruka Nishimura
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ying Wang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Elhussiny MZ, Nishimura H, Tran PV, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Intracerebroventricular injection of taurine induces hypothermia through modifying monoaminergic pathways in chicks. Eur J Pharmacol 2022; 928:175092. [PMID: 35697149 DOI: 10.1016/j.ejphar.2022.175092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Brain monoamines are reported to regulate body temperature and food intake. The objective of this study was to investigate the mechanism of brain monoamine metabolism in taurine-induced hypothermia and appetite suppression. In Experiment 1, 5-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 μmol/10 μL). In Experiment 2, the chicks were ICV injected with saline, taurine, fusaric acid (dopamine-β-hydroxylase inhibitor: 558 nmol), or taurine with fusaric acid. In Experiment 3, the chicks were ICV injected with saline, taurine, para-chlorophenylalanine (PCPA, tryptophan hydroxylase inhibitor: 400 nmol), or taurine with PCPA. In Experiment 4, the chicks were ICV injected with saline, taurine, clorgyline (monoamine oxidase inhibitor: 81 nmol), or taurine with clorgyline. Central taurine lowered rectal temperature at 30 min post-injection and increased norepinephrine in the brainstem and its metabolite 3-methoxy-4-hydroxyphenylglycol in both the diencephalon and brainstem. Similarly, taurine treatment induced increases in serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid in the diencephalon. Fusaric acid completely and PCPA partially, but not clorgyline, attenuated taurine-induced hypothermia. The anorexigenic effect of taurine was partially attenuated by PCPA, but not fusaric acid nor clorgyline. In conclusion, central taurine activates dopamine-β-hydroxylase and tryptophan hydroxylase to produce norepinephrine and 5-HT, and then induces hypothermia, but 5-HT alone may be linked with taurine-induced anorexia in chicks.
Collapse
Affiliation(s)
- Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Haruka Nishimura
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0306, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0306, USA
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, 794-8555, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Elhussiny MZ, Tran PV, Pham CV, Nguyen LTN, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Central GABA A receptor mediates taurine-induced hypothermia and possibly reduces food intake in thermo-neutral chicks and regulates plasma metabolites in heat-exposed chicks. J Therm Biol 2021; 98:102905. [PMID: 34016332 DOI: 10.1016/j.jtherbio.2021.102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.
Collapse
Affiliation(s)
- Mohamed Z Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Department of Animal & Poultry Behaviour and Management, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Phuong V Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Cuong V Pham
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Linh T N Nguyen
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan; Laboratory of Stress Physiology and Metabolism, Division of Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|