1
|
Zheng L, Liu Y, Zhang Y, Xu B, Sagada G, Wang Z, Chen C, Lang X, Zhang J, Shao Q. Comparative study on the effects of crystalline L-methionine and methionine hydroxy analogue calcium supplementations in the diet of juvenile Pacific white shrimp ( Litopenaeus vannamei). Front Physiol 2023; 14:1067354. [PMID: 36793420 PMCID: PMC9923173 DOI: 10.3389/fphys.2023.1067354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
An 8-week feeding trial was conducted to evaluate the effects of L-methionine and methionine hydroxy analogue calcium (MHA-Ca) supplements in low-fishmeal diet on growth performance, hepatopancreas morphology, protein metabolism, anti-oxidative capacity, and immunity of Pacific white shrimp (Litopena eus vannamei). Four isonitrogenous and isoenergetic diets were designed: PC (203.3 g/kg fishmeal), NC (100 g/kg fishmeal), MET (100 g/kg fishmeal +3 g/kg L-methionine) and MHA-Ca (100 g/kg fishmeal +3 g/kg MHA-Ca). White shrimp (initial body weight 0.23 ± 0.00 g, 50 shrimp per tank) were allocated to 12 tanks and divided among 4 treatments in triplicates. In response to L-methionine and MHA-Ca supplementations, the shrimp exhibited higher weight gain rate (WGR), specific growth rate (SGR), condition factor (CF), and lower hepatosomatic index (HSI) compared to those fed the NC diet (p < 0.05). The WGR and SGR of shrimp fed L-methionine and MHA-Ca showed no difference with those in the PC diet (p > 0.05). Both of L-methionine and MHA-Ca supplementary diets significantly decreased the malondialdehyde (MDA) levels of shrimp when compared with the NC diet (p < 0.05). L-methionine supplementation improved the lysozyme (LZM) activity and total antioxidant capacity (T-AOC) of shrimp, while the MHA-Ca addition elevated the reduced glutathione (GSH) levels in comparison with those fed the NC diet (p < 0.05). Hypertrophied blister cells in hepatocytes were observed in shrimp fed the NC diet, and alleviated with L-methionine and MHA-Ca supplementations. Shrimp fed the MET and MHA-Ca diets had higher mRNA expression levels of target of rapamycin (tor) than those fed the NC diet (p < 0.05). Compared to the NC group, dietary MHA-Ca supplementation upregulated the expression level of cysteine dioxygenase (cdo) (p < 0.05), while L-methionine supplementation had no significant impact (p > 0.05). The expression levels of superoxide dismutase (sod) and glutathione peroxidase (gpx) were significantly upregulated by L-methionine supplemented diet in comparison with those in the NC group (p < 0.05). Overall, the addition of both L-methionine and MHA-Ca elevated the growth performance, facilitated protein synthesis, and ameliorated hepatopancreatic damage induced by plant-protein enriched diet in L. vannamei. L-methionine and MHA-Ca supplements enhanced anti-oxidants differently.
Collapse
Affiliation(s)
- Lu Zheng
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuechong Liu
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanmei Zhang
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bingying Xu
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gladstone Sagada
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhixuan Wang
- Shandong NHU Amino Acid Co., Ltd, Weifang, China
| | - Cong Chen
- Shandong NHU Amino Acid Co., Ltd, Weifang, China
| | | | - Jiaonan Zhang
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Co., Ltd, Fuqing, China
| | - Qingjun Shao
- Aqua-feed and Nutrition Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Qingjun Shao,
| |
Collapse
|
2
|
Hedén I, Sundell K, Jönsson E, Sundh H. The role of environmental salinity on Na +-dependent intestinal amino acid uptake in rainbow trout (Oncorhynchus mykiss). Sci Rep 2022; 12:22205. [PMID: 36564520 PMCID: PMC9789053 DOI: 10.1038/s41598-022-26904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Na+/K+-ATPases (NKA) in the basolateral membrane of the intestinal enterocytes create a Na+-gradient that drives both ion-coupled fluid uptake and nutrient transport. Being dependent on the same gradient as well as on the environmental salinity, these processes have the potential to affect each other. In salmonids, L-lysine absorption has been shown to be higher in freshwater (FW) than in seawater (SW) acclimated fish. Using electrophysiology (Ussing chamber technique), the aim was to explore if the decrease in L-lysine transport was due to allocation of the Na+-gradient towards ion-driven fluid uptake in SW, at the cost of amino acid transport. Intestinal NKA activity was higher in SW compared to FW fish. Exposure to ouabain, an inhibitor of NKA, decreased L-lysine transport. However, exposure to bumetanide and hydrochlorothiazide, inhibitors of Na+, K+, 2Cl--co-transporter (NKCC) and Na+, Cl--co-transporter (NCC) respectively, did not affect the rate of intestinal L-lysine transport. In conclusion, L-lysine transport is Na+-dependent in rainbow trout and the NKA activity and thus the available Na+-gradient increases after SW acclimation. This increased Na+-gradient is most likely directed towards osmoregulation, as amino acid transport is not compromised in SW acclimated fish.
Collapse
Affiliation(s)
- Ida Hedén
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Kristina Sundell
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Elisabeth Jönsson
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Henrik Sundh
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| |
Collapse
|
3
|
How Different Dietary Methionine Sources Could Modulate the Hepatic Metabolism in Rainbow Trout? Curr Issues Mol Biol 2022; 44:3238-3252. [PMID: 35877447 PMCID: PMC9315512 DOI: 10.3390/cimb44070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation.
Collapse
|
4
|
Pinel K, Heraud C, Morin G, Dias K, Marcé A, Beauclair L, Fontagné-Dicharry S, Masagounder K, Klünemann M, Seiliez I, Beaumatin F. Are the Main Methionine Sources Equivalent? A Focus on DL-Methionine and DL-Methionine Hydroxy Analog Reveals Differences on Rainbow Trout Hepatic Cell Lines Functions. Int J Mol Sci 2022; 23:2935. [PMID: 35328356 PMCID: PMC8954868 DOI: 10.3390/ijms23062935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
The replacement of fishmeal by plant proteins in aquafeeds imposes the use of synthetic methionine (MET) sources to balance the amino acid composition of alternative diets and so to meet the metabolic needs of fish of agronomic interest such as rainbow trout (RT-Oncorhynchus mykiss). Nonetheless, debates still exist to determine if one MET source is more efficiently used than another by fish. To address this question, the use of fish cell lines appeared a convenient strategy, since it allowed to perfectly control cell growing conditions notably by fully depleting MET from the media and studying which MET source is capable to restore cell growth/proliferation and metabolism when supplemented back. Thus, results of cell proliferation assays, Western blots, RT-qPCR and liquid chromatography analyses from two RT liver-derived cell lines revealed a better absorption and metabolization of DL-MET than DL-Methionine Hydroxy Analog (MHA) with the activation of the mechanistic Target Of Rapamycin (mTOR) pathway for DL-MET and the activation of integrated stress response (ISR) pathway for MHA. Altogether, the results clearly allow to conclude that both synthetic MET sources are not biologically equivalent, suggesting similar in vivo effects in RT liver and, therefore, questioning the MHA efficiencies in other RT tissues.
Collapse
Affiliation(s)
- Karine Pinel
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Cécile Heraud
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Guillaume Morin
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Karine Dias
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Annaëlle Marcé
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Linda Beauclair
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Stéphanie Fontagné-Dicharry
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Karthik Masagounder
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 4D-63457 Hanau, Germany; (K.M.); (M.K.)
| | - Martina Klünemann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 4D-63457 Hanau, Germany; (K.M.); (M.K.)
| | - Iban Seiliez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| | - Florian Beaumatin
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (C.H.); (G.M.); (K.D.); (A.M.); (L.B.); (S.F.-D.); (I.S.)
| |
Collapse
|
5
|
Abstract
Commercial diets for tilapia juveniles contain high levels of plant protein sources. Soybean meal has been utilised due to its high protein content; however, soy-based diets are limited in methionine (Met) and require its supplementation to fulfil fish requirements. dl-Methinone (dl-Met) and Ca bis-methionine hydroxyl analogue (MHA-Ca) are synthetic Met sources supplemented in aquafeeds, which may differ in biological efficiency due to structural differences. The present study evaluated the effect of both methionine sources on metabolism and growth of Nile tilapia. A growth trial was performed using three isonitrogenous and isoenergetic diets, containing plant ingredients as protein sources: DLM and MHA diets were supplemented on equimolar levels of Met, while REF diet was not supplemented. Hepatic free Met and one-carbon metabolites were determined in fish fed for 57 d. Metabolism of dl-Met and MHA was analysed by an in vivo time-course trial using 14C-labelled tracers. Only dl-Met supplementation significantly increased final body weight and improved feed conversion and protein efficiency ratios compared with the REF diet. Our findings indicate that Met in DLM fed fish follows the transsulphuration pathway, while in fish fed MHA and REF diets it is remethylated. The in vivo trial revealed that 14C-dl-Met is absorbed faster and more retained than 14C-MHA, resulting in a greater availability of free Met in the tissues when fish is fed with DLM diet. Our study indicates that dietary dl-Met supplementation improves growth performance and N retention, and that Met absorption and utilisation are influenced by the dietary source in tilapia juveniles.
Collapse
|
6
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|