1
|
Enriquez T, Teets NM. Lipid Properties and Metabolism in Response to Cold. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40195263 DOI: 10.1007/5584_2024_848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Temperature directly shapes insect physiology and has a preponderant effect on life history traits. Winter conditions in temperate and polar regions are especially challenging for insects. Extremely low temperatures can indeed compromise insect survival by promoting freezing of body fluids, but mild cold temperatures above 0 °C (i.e., chilling) can also lead to complex and severe physiological dysregulations. Among physiological damages due to freezing and chilling, insect lipids are one of the primary targets. As low temperatures tend to rigidify phospholipid bilayers, membrane functions are compromised in the cold. Lipid rigidification due to cold also decreases the accessibility of fat stores for metabolic enzymes, and therefore their availability for basal metabolism. These deleterious effects, combined with low food availability in winter, result in substantial nutritional challenges for overwintering insects. Consequently, lipid modifications such as homeoviscous adaptation of cell membranes, fluidity maintenance of fat reserves, cuticular lipid accumulation, and production of antifreeze glycolipids are essential components of the physiological response to cold stress. The aim of the present chapter is to present the physiological challenges caused by low temperatures, the lipid modifications linked with cold tolerance in insects, and the molecular regulation of lipid metabolism during cold exposure.
Collapse
Affiliation(s)
- Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Andersen MK, Donini A, MacMillan HA. Measuring insect osmoregulation in vitro: A reference guide. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111751. [PMID: 39341353 DOI: 10.1016/j.cbpa.2024.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Osmoregulation is influenced by a wide variety of biotic and abiotic variables, and maintenance of systemic osmoregulatory homeostasis is critical to insect fitness. Because insects are so small, accurately quantifying renal organ function is technically challenging, and often requires specialized equipment. On top of this, nearly a century of toiling in the laboratory has led to a wide and still growing variety of methods that can be difficult for novice researchers to disentangle. Here, we provide a reference guide for the most used in vitro approaches in the study of insect osmoregulation, including the Ramsay assay, Ussing chamber, epithelial potential measurement, scanning ion-selective electrode technique, and hindgut assays. Along the way, we highlight the history of each methodological innovation.
Collapse
Affiliation(s)
| | - Andrew Donini
- Department of Biology, York University, Toronto M3J 1P3, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
3
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Long J, Xing W, Wang Y, Wu Z, Li W, Zou Y, Sun J, Zhang F, Pi Z. Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. BOTANICAL STUDIES 2022; 63:18. [PMID: 35670889 PMCID: PMC9174413 DOI: 10.1186/s40529-022-00349-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low temperature, which is one of the main environmental factors that limits geographical distribution and sucrose yield, is a common abiotic stress during the growth and development of sugar beet. As a regulatory hub of plant response to abiotic stress, activity in the chloroplasts is related to many molecular and physiological processes, particularly in response to low temperature stress. RESULTS The contents of chlorophyll (Chl) and malondialdehyde (MDA), relative electrical conductivity (REL), and superoxide dismutase (SOD) activity were measured. The results showed that sugar beet could manage low temperature stress by regulating the levels of Chl, REL and MDA, and the activity of SOD. The physiological responses indicated that sugar beets respond positively to low temperature treatments and are not significantly damaged. Moreover, to determine the precise time to response low temperature in sugar beet, well-known abiotic stresses-responsive transcript factor family, namely DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB), was selected as the marker gene. The results of phylogenetic analyses showed that BvDREBA1 and BvDREBA4 were in the same branch as the cold- and drought-responsive AtDREB gene. In addition, the expression of BvDREBs reached its maximum level at 24 h after low temperature by RNA-Seq and qRT-PCR analysis. Furthermore, the changes in chloroplast proteome after low temperature at 24 h were detected using a label-free technique. A total of 416 differentially expressed proteins were identified. GO enrichment analysis showed that 16 GO terms were significantly enriched, particularly chloroplast stroma, chloroplast envelope, and chloroplast thylakoid membrane. It is notable that the transport of photosynthetic proteins (BvLTD and BvTOC100), the formation of starch granules (BvPU1, BvISA3, and BvGWD3) and the scavenging of reactive oxygen species (BvCu/Zn-SOD, BvCAT, BvPrx, and BvTrx) were the pathways used by sugar beets to respond to low temperatures at an early stage. CONCLUSIONS These results provide a preliminarily analysis of how chloroplasts of sugar beet respond to low temperature stress at the translational level and provide a theoretical basis for breeding low temperature resistant varieties of sugar beet.
Collapse
Affiliation(s)
- Jiali Long
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wang Xing
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Zedong Wu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wenjing Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yi Zou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jiaping Sun
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Fushun Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| | - Zhi Pi
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
5
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
6
|
Overgaard J, Gerber L, Andersen MK. Osmoregulatory capacity at low temperature is critical for insect cold tolerance. CURRENT OPINION IN INSECT SCIENCE 2021; 47:38-45. [PMID: 33676056 DOI: 10.1016/j.cois.2021.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
At low temperature many insects lose extracellular ion homeostasis and the capacity to mitigate homeostatic imbalance determines their cold tolerance. Extracellular homeostasis is ensured by the osmoregulatory organs and recent research has emphasized key roles for the Malpighian tubules and hindgut in modulating insect cold tolerance. Here, we review the effects of low temperature on transport capacity of osmoregulatory organs and outline physiological processes leading from cold exposure to disruption of ion homeostasis and cold-injury in insects. We show how cold adaptation and cold acclimation are associated with physiological modifications to transport capacity in Malpighian tubules and hindgut. These responses mitigate loss of homeostasis and we highlight how further study of molecular and cellular mechanisms are critical to fully appreciate the adaptations that facilitate insect cold tolerance.
Collapse
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Lucie Gerber
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
7
|
Teets NM, Hayward SAL. Editorial on combatting the cold: Comparative physiology of low temperature and related stressors in arthropods. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111037. [PMID: 34274530 DOI: 10.1016/j.cbpa.2021.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|