1
|
Pu C, Liu Y, Ma J, Li J, Sun R, Zhou Y, Wang B, Wang A, Zhang C. The effects of bisphenol S exposure on the growth, physiological and biochemical indices, and ecdysteroid receptor gene expression in red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109811. [PMID: 38061619 DOI: 10.1016/j.cbpc.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
The experiment was conducted to investigate the effects of Bisphenol S (BPS) on growth, physiological and biochemical indices, and the expression of ecdysteroid receptor (ECR) of the red swamp crayfish (Procambarus clarkii). The gene encoding ECR was isolated from red swamp crayfish by homologous cloning and rapid amplification of cDNA ends (RACE). The ECR transcripts were 1757 bp long and encoded proteins of 576 amino acids. The quantitative real-time PCR (qRT-PCR) analysis showed that the ECR gene was expressed in various tissues under normal conditions, and the highest level was observed in the ovary and the lowest level was observed in the muscle (P < 0.05). Then, the experiment was designed with four different BPS concentrations (0, 1, 10, and 100 μg/L), BPS exposure for 14 days, three parallel groups, and a total of 240 red swamp crayfish. At 100 μg/L BPS, the survival rate, weight gain rate, and relative length rate were decreased significantly (P < 0.05). Malonaldehyde (MDA) content reached the highest level at 100 μg/L BPS. When BPS concentration was higher than 10 μg/L, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly lower than those of the control group (P < 0.05). The expression levels of the ECR gene in ovary, intestinal, gill, and hepatopancreas tissues were significantly increased after BPS exposure (P < 0.05). The ECR gene expression in ovaries and Y-organs was significantly higher than other groups in 10 μg/L BPS (P < 0.05). The expressions of the tumor necrosis factor -α (TNF-α) and interleukin-6 (IL-6) genes in the hepatopancreas gradually increased, and the highest expression was observed exposed in 100 μg/L BPS (P < 0.05). This research will provide novel insights into the health risk assessment of BPS in aquatic organisms.
Collapse
Affiliation(s)
- Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuanyi Liu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiajin Li
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruyi Sun
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yang Zhou
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Aimin Wang
- Institute of Aquatic Animal Nutrition and Feed, College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China.
| | - Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
2
|
Wang G, Lu R, Gao Y, Zhang H, Shi X, Ma W, Wu L, Tian X, Liu H, Jiang H, Li X, Ma X. Molecular characterization and potential function of Rxrγ in gonadal differentiation of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2023; 233:106360. [PMID: 37429547 DOI: 10.1016/j.jsbmb.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.
Collapse
Affiliation(s)
- Guiyu Wang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Ruiyi Lu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Yijie Gao
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Haoran Zhang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xi Shi
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Wenge Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Limin Wu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xue Tian
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Huifen Liu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Hongxia Jiang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
4
|
Shen GM, Ma T, Chen XR, Chen L, Liu GM, Jie LY, Adang M, He L. Retinoid X receptor 1 is a specific lethal RNAi target disturbing chitin metabolism during hatching of Tetranychus cinnabarinus. Int J Biol Macromol 2023:125458. [PMID: 37348587 DOI: 10.1016/j.ijbiomac.2023.125458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
RNA interference (RNAi) can be developed as an alternative method of chemical pesticides for pest control. In this study, we noticed a specifically expressed gene (retinoid X receptor 1, TcRXR1) in the egg stage of T. cinnabarinus. RNAi was applied to investigate the function of TcRXR1. Results showed that with continuous feeding of dsTcRXR1, the larvae of T. cinnabarinus could still successfully develop to adult, which was in accordance with the low expression of TcRXR1 out of egg stage. High mortality of eggs was observed after eggs were treated with dsTcRXR1. To investigate the downstream genes of TcRXR1, the RNA samples after successful RNAi of TcRXR1 were analyzed by transcriptome analysis. According to function annotation of differentially expressed genes, 6 genes were selected for their potential function with the phenotype of dsTcRXR1, and among them, a chitinase gene (TcCHT-E) attained a high expression level in the late stage of egg, peaking just after the expression peak of TcRXR1. Mortality of eggs was observed under the effect of dsTcCHT-E as well as dsTcRXR1. In conclusion, TcRXR1 is a specific RNAi target for control of T. cinnabarinus, and its lethal mechanism might be disturbing chitin metabolism hatching of egg.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ting Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xing-Ru Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Li Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guang-Ming Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Luo-Yan Jie
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Michael Adang
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|