1
|
Matharoo N, Sumithaa C, Ganeshpandian M, Murugavel R. Mononuclear Copper(II) Phosphinates Bearing Mono-, Bi-, and Tridentate N-Donor Ligands: DNA Binding and Cleavage, Cytotoxicity, and Nanoencapsulation. Chem Asian J 2025:e202500421. [PMID: 40266631 DOI: 10.1002/asia.202500421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Mononuclear Cu(II) phosphinate-based compounds, [Cu(H2L1)2(Py)2] (1), [Cu(OAc)(H2L1)(Cl-tpy)] (2), and [Cu(H2L1)(Phen)2]H2L1 (3) (Py = pyridine, Cl-tpy = 4'-chloro-2,2':6',2''-terpyridine, Phen = 1,10-phenanthroline monohydrate) were synthesized by reacting Cu(OAc)2·2H2O with N-donor ligands in the presence of bis(2-hydroxy-5-methylphenyl) phosphinic acid (H3L1). The compounds were isolated as single crystals and characterized by spectroscopic and microanalytical techniques. Owing to the bioavailability and biocompatibility of copper, the oxidative DNA cleavage ability of 1-3 was studied by incubating supercoiled (SC) pUC19 DNA (40 µM). The highest cleavage efficiency of complex 3 is attributed to the strong partial intercalation of 1, 10-phenanthroline rings, which enhances reactive oxygen species (ROS) generation. Encapsulation of 3 in a polydiacetylene-supported liposome nanocarrier (Lip-(3)) improves biocompatibility and anticancer activity while addressing solubility and toxicity concerns. The spherical nanoparticles (∼93 nm), characterized by UV-vis, TEM, DLS, and EDX studies exhibit stability, efficient encapsulation, and suitability for targeted drug delivery.
Collapse
Affiliation(s)
- Navneet Matharoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chezhiyan Sumithaa
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
2
|
Liu H, Zou J, Li X, Ge Y, He W. Drug delivery for platinum therapeutics. J Control Release 2025; 380:503-523. [PMID: 39923853 DOI: 10.1016/j.jconrel.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Cancer remains a severe threat to human health. Platinum drugs, such as cisplatin (CDDP), oxaliplatin, and carboplatin, are extensively utilized for treating various cancers and have become the primary drugs in first-line treatments for numerous solid tumors due to their effective anticancer properties. However, their side effects, including drug resistance, nephrotoxicity and ototoxicity, limit the clinical application. Therefore, there is an urgent need to develop targeted delivery and controlled release systems for platinum drugs to address the disadvantages, enhancing tumor accumulation and improving therapeutic effects. In this review, we first review the progress of platinum drugs, their anticancer mechanism, clinical applications and limitations. Then, we comprehensively summarize the platinum-based delivery using drug carriers and responsive strategies. We especially highlight the platinum-delivery formulations in ongoing clinical trials. Finally, we provide perspectives for this field. The review could provide an increasingly in-depth understanding of platinum therapeutics and motivate increasing delivery tactics to overcome the limitations of platinum application.
Collapse
Affiliation(s)
- Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yizhi Ge
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, PR China.
| |
Collapse
|
3
|
Sharma A, Al Amin M, Kshetri MB, Alqarni S, Jogadi W, Solmen J, Lin Z, Akter S, Zheng YR. PEGylation Effects on Amphiphilic Platinum(IV) Complexes: Influence on Uptake, Activation, and Cytotoxicity. Pharmaceutics 2025; 17:440. [PMID: 40284435 PMCID: PMC12030465 DOI: 10.3390/pharmaceutics17040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The utilization of amphiphilic Pt(IV) complexes as prodrugs offers a promising strategy to revolutionize Pt-based cancer therapy by enhancing drug delivery and activation. While PEGylation is widely used to optimize drug properties, its impact on the biological behavior of amphiphilic Pt(IV) complexes remains unclear. This study systematically investigates how the PEGylation of varying molecular weights influences their cytotoxicity, cellular uptake, and activation. Methods: Pt(IV) complexes were synthesized with PEG chains of different molecular weights using HATU-catalyzed amide bond formation and copper-free click chemistry. Their biological properties were assessed through cell-based analyses, focusing on cytotoxicity, cellular uptake, and activation by biological reductants. Results: Small PEG modifications retained the potent cytotoxicity of amphiphilic Pt(IV) prodrugs, whereas large PEG chains significantly reduced efficacy. The decrease in potency was linked to impaired cellular uptake and mitochondrial accumulation. Additionally, large PEG modifications slowed the reduction and activation of Pt(IV) prodrugs by biological reductants, further limiting their anticancer activities. Conclusions: These findings underscore the critical role of PEGylation in metallodrug design and provide key insights into optimizing PEGylation strategies for enhancing platinum-based cancer therapies.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Md Al Amin
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Man B. Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Jordan Solmen
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Zexin Lin
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Shirin Akter
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| |
Collapse
|
4
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhang M, Chen Y, Feng S, He Y, Liu Z, Zhang N, Wang Q. Transferrin-Modified Carprofen Platinum(IV) Nanoparticles as Antimetastasis Agents with Tumor Targeting, Inflammation Inhibition, Epithelial-Mesenchymal Transition Suppression, and Immune Activation Properties. J Med Chem 2024; 67:16416-16434. [PMID: 39235464 DOI: 10.1021/acs.jmedchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/β-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
7
|
Sahoo PR, Spernyak JA, Turowski SG, Morrow JR. Self-Assembled Iron(III) Coordination Cage as an MRI-Active Carrier for a Gold(I) Drug. Bioconjug Chem 2024. [PMID: 39303010 PMCID: PMC11922791 DOI: 10.1021/acs.bioconjchem.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A T1 MRI probe based on a self-assembled coordination cage with four iron(III) centers acts as a host for the hydrolysis product of the gold(I) anticancer drug, Au(PEt3)Cl. 1H NMR characterization of the gold complex encapsulated within the diamagnetic Ga(III) analog of the coordination cage is consistent with loss of chloride to give aquated gold complex, most likely [Au(PEt3)(OH2)]+ within the cage. The gold complex undergoes pH-dependent speciation changes in the Ga(III) cage and is released at mildly acidic pH from both the Ga(III) and Fe(III) cages. NMR spectroscopy studies of the encapsulated gold complex in the presence of human serum albumin (HSA) show that the gold complex remains inside of the Ga(III) cage for several hours, resisting release and binding to cysteine residues of HSA. The Fe(III) cage with encapsulated gold complex shows enhanced contrast of the vasculature and uptake into CT26 tumors in BALB/c mice as shown by MRI. The gold complex is solubilized by the iron(III) cage for intravenous injection, whereas the free complex must be injected intraperitoneally. Gold complex accumulates in the tumor for both caged and free complex over 1-48 h as measured by ex-vivo analysis. Encapsulation in the Fe(III) cage modulates the biodistribution of the gold complex in mice in comparison to the free complex, consistent with the function of the cage as a carrier.
Collapse
Affiliation(s)
- Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
8
|
Jogadi W, Kshetri MB, Alqarni S, Sharma A, Cheline M, Amin MA, Sheets C, Nsoure-Engohang A, Zheng YR. Engineering Novel Amphiphilic Platinum(IV) Complexes to Co-Deliver Cisplatin and Doxorubicin. Molecules 2024; 29:4095. [PMID: 39274943 PMCID: PMC11397443 DOI: 10.3390/molecules29174095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, we report a novel platinum-doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)-doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)-doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)-doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)-doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Man B Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Md Al Amin
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Cynthia Sheets
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Angele Nsoure-Engohang
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA
| |
Collapse
|
9
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
10
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
11
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023; 65:1216-1234. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Kshetri M, Jogadi W, Alqarni S, Datta P, Cheline M, Sharma A, Betters T, Broyles D, Zheng YR. Exploring the Impact of Head Group Modifications on the Anticancer Activities of Fatty-Acid-like Platinum(IV) Prodrugs: A Structure-Activity Relationship Study. Int J Mol Sci 2023; 24:13301. [PMID: 37686109 PMCID: PMC10487970 DOI: 10.3390/ijms241713301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
We conducted the first comprehensive investigation on the impact of head group modifications on the anticancer activities of fatty-acid-like Pt(IV) prodrugs (FALPs), which are a class of platinum-based metallodrugs that target mitochondria. We created a small library of FALPs (1-9) with diverse head group modifications. The outcomes of our study demonstrate that hydrophilic modifications exclusively enhance the potency of these metallodrugs, whereas hydrophobic modifications significantly decrease their cytotoxicity. To further understand this interesting structure-activity relationship, we chose two representative FALPs (compounds 2 and 7) as model compounds: one (2) with a hydrophilic polyethylene glycol (PEG) head group, and the other (7) with a hydrophobic hydrocarbon modification of the same molecular weight. Using these FALPs, we conducted a targeted investigation on the mechanism of action. Our study revealed that compound 2, with hydrophilic modifications, exhibited remarkable penetration into cancer cells and mitochondria, leading to subsequent mitochondrial and DNA damage, and effectively eradicating cancer cells. In contrast, compound 7, with hydrophobic modifications, displayed a significantly lower uptake and weaker cellular responses. The collective results present a different perspective, indicating that increased hydrophobicity may not necessarily enhance cellular uptake as is conventionally believed. These findings provide valuable new insights into the fundamental principles of developing metallodrugs.
Collapse
Affiliation(s)
- Man Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Payel Datta
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Tyler Betters
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Deonya Broyles
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| |
Collapse
|