1
|
Singh M, Saini VP, Meena LL. Heat stress induces oxidative stress and weakens the immune system in catfish Clarias magur: Evidence from physiological, histological, and transcriptomic analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110294. [PMID: 40154646 DOI: 10.1016/j.fsi.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Climate change is unequivocal, causing a rise in the Earth's temperature, which ultimately impacts all ecosystems. However, aquatic ecosystems are most severely affected by rising temperatures resulting in huge losses to aquaculture industry. The present study investigated the oxidative stress, histopathological changes, and transcriptomic responses in a freshwater catfish Clarias magur subjected to acute heat stress. Fish were exposed to four different temperatures, i.e., 28, 30, 32, and 34 °C, for 96 h to assess their heat tolerance and adaptation behavior. Fish kept at 26 °C were considered the control group. Elevated levels of key antioxidative enzymes such as catalase, glutathione reductase, and superoxide dismutase, were recorded in vital organs (gills, kidney, liver, and rosette). High rates of lipid peroxidation were also observed in the gills, kidney, liver, and rosette. An analysis of the top 25 differentially expressed genes of the gill transcriptome revealed that 72 percent of the transcripts were represented by innate and adaptive immune response genes. Downregulation of BOLA class I and MHC class I molecules indicated impaired immunity whereas, upregulation of MHC class II beta chain and GTPase IMAP8 suggested a compensatory immune response. These findings were also supported by the observed histoarchitectural alterations, such as disintegration of the skin barrier, hepatic and nephrotic apoptosis, tissue hyperplasia, macrophage infiltration, and development of splenic granulomas. This study provides important insights into physiological and molecular mechanisms underlying acute heat stress responses. Understanding these mechanisms is important for developing mitigation strategies to improve the sustainability and resilience of commercially important catfish under continuously changing climatic conditions.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India.
| | - Ved Prakash Saini
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| | - Lakan Lal Meena
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| |
Collapse
|
2
|
de Souza AM, da Silva Junior FC, Dantas ÉD, Galvão-Pereira MC, de Medeiros SRB, Luchiari AC. Temperature effects on development and lifelong behavior in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179172. [PMID: 40112540 DOI: 10.1016/j.scitotenv.2025.179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
In recent decades, global warming has intensified temperature changes, placing substantial pressure on organism survival. Understanding how temperature variations impact development and behavior is crucial for conservation strategies. This study examined how temperature affects zebrafish embryo development and behavior, focusing on mRNA expression changes under thermal challenges. Zebrafish embryos were reared at 27 °C (control), 22 °C, and 30 °C, monitored from 24 to 120 hpf for structural development, and tested for optomotor responses at 7 dpf. Juvenile (30 dpf) and adult (90 dpf) fish reared at 27 °C were subjected to acute temperature shifts (22 °C and 30 °C for 2 h), followed by behavioral assessments and brain sampling for hsp90a and hspb1 mRNA expression analysis. Survival rates were significantly lower at 22 °C, with higher hatching rates at 30 °C but decreased at 22 °C. Developmental abnormalities varied: head malformations were more common at 30 °C, pericardial and yolk sac edema at 22 °C, and tail malformations at both extremes. Optomotor responses were impaired in fish from 22 °C. Social and aggressive behaviors were mostly unaffected, but fish from extreme temperatures showed increased risk-taking and reduced response to alarm substances. hsp90a mRNA expression was elevated in fish raised at 30 °C and those exposed to the 30 °C challenge, while hspb1 mRNA expression remained stable across temperatures. Cooling environments detrimentally affected embryo growth and survival, while warmer conditions induced pronounced growth defects. Elevated temperatures posed greater risks, triggering heightened hsp90a expression crucial for stress adaptation. Understanding thermal variation impacts on embryo development is crucial for mitigating climate change effects on species' viability and reproduction.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | | | - Éntony David Dantas
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59064-741, Brazil
| | - Maria Clara Galvão-Pereira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil.
| |
Collapse
|
3
|
McFarling RJ, Teixeira Alves M, Lange A, Clark M, Woodrow HJ, Katsiadaki I, van Aerle R, Santos EM. The potential for heat shock exposure during early development to alter the molecular responses to subsequent exposure to heat stress in the rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111817. [PMID: 39863055 DOI: 10.1016/j.cbpa.2025.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures. The propensity for environmental temperature during early embryo development to influence later life transcriptomic responses has been observed in numerous animal species, and, if harnessed, could provide a method for inducing phenotypic changes in adult aquaculture species. We hypothesise that exposure of rainbow trout embryos to temperature stress results in alterations to transcriptional responsiveness upon re-exposure later in life. To test this hypothesis, we exposed embryos to a range of different heat shock treatments during early development and then analysed their response to thermal stress at five days post hatch (dph), in comparison to naïve fish that experienced no early development heat shock. Hsp70a and hsp70b transcription was measured (using RT-QPCR) as a biomarker for thermal stress response. Significantly greater transcriptional induction of hsp70a in response to post-hatch thermal stress was found in heat shocked larvae compared to naïve larvae (p = 0.0085). The timing, intensity and duration of the initial heat shock was not found to statistically influence the alteration of hsp induction when compared to that of naïve larvae. Together, these results support our hypothesis that heat shock during early development has the potential to affect responsiveness to the same stressor later in life. Future studies should focus on understanding whether this could be utilised to increase robustness of fish in aquaculture.
Collapse
Affiliation(s)
- Rob J McFarling
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
| | | | - Anke Lange
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Millie Clark
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Harry J Woodrow
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Eduarda M Santos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Ji L, Shi Q, Shangguan Y, Chen C, Zhu J, Dong Z, Hong X, Liu X, Wei C, Zhu X, Li W. Molecular Response and Metabolic Reprogramming of the Spleen Coping with Cold Stress in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Antioxidants (Basel) 2025; 14:217. [PMID: 40002403 PMCID: PMC11852077 DOI: 10.3390/antiox14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis), as a type of warm-water reptile, could be induced to massive death by sharp temperature decline. Hence, the mechanism of spleen tissue responding to cold stress in the P. sinensis was investigated. The present results showed that the superoxide dismutase (SOD) activity declined from 4 to 16 days post-cold-stress (dps), while the catalase (CAT) and glutathione peroxidase (GSH-Px) activities increased, from 4 to 8 dps in the 14 °C (T14) and 7 °C (T7) stress groups. The spleen transcriptome in the T7 group and the control group (CG) at 4 dps obtained 2625 differentially expressed genes (DEGs), including 1462 upregulated and 1663 downregulated genes. The DEGs were enriched mainly in the pathways "intestinal immune network for IgA production" (Pigr, Il15ra, Tnfrsf17, Aicda, and Cd28), "toll-like receptor signaling pathway" (Mapk10, Tlr2, Tlr5, Tlr7, and Tlr8), and "cytokine-cytokine receptor interaction" (Cx3cl1, Cx3cr1, Cxcl14, Cxcr3, and Cxcr4). The metabolomic data showed that esculentic acid, tyrosol, diosgenin, heptadecanoic acid, and 7-ketodeoxycholic acid were obviously increased, while baccatin III, taurohyocholate, parthenolide, enterolactone, and tricin were decreased, in the CG vs. T7 comparison. Integrated analysis of the two omics revealed that "glycine, serine and threonine metabolism", "FoxO signaling pathway", and "neuroactive ligand-receptor interaction" were the main pathways responding to the cold stress. Overall, this work found that low temperature remarkably influenced the antioxidant enzyme activities, gene expression pattern, and metabolite profile in the spleen, indicating that immunity might be weakened by cold stress in P. sinensis.
Collapse
Affiliation(s)
- Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Qing Shi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Yisen Shangguan
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Zhen Dong
- South China Sea Marine Survey Center, Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510275, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| |
Collapse
|
5
|
Rogozynski NP, Cadonic IG, Soto-Dávila M, Wong-Benito V, Rodriguez-Ramos T, Craig P, Dixon B. Diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) exhibit differential immunological responses to acute thermal stress. JOURNAL OF FISH DISEASES 2024; 47:e13998. [PMID: 39001637 DOI: 10.1111/jfd.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 10/15/2024]
Abstract
Exposure to temperatures outside of a fish's optimal range results in suppression of the immune system, ultimately leaving aquaculture stocks susceptible to disease outbreaks. This effect is exacerbated in triploid fishes, which demonstrate greater susceptibility to stress than their diploid counterparts. This study investigates the impacts of acute heat stress on the abundance of immune transcripts and proteins in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha), an important finfish crop. This study also demonstrates that acute heat stress induces significant increases in the abundance hsp70, hsp90 and il1b transcripts in the head kidneys, gills and heart ventricles of both diploid and triploid Chinook salmon. Widespread dysregulation of antigen-presentation transcripts was also observed in fish of both ploidies. These results suggest that acute heat stress activates acute-phase responses in Chinook salmon and dysregulates antigen presentation, potentially leaving fish more susceptible to infection. At the protein level, IL-1β was differentially expressed in the head kidney and ventricles of diploid and triploid salmon following heat shock. Differential expression of two tapasin-like proteins in diploid and triploid salmon subjected to heat shock was also observed. Altogether, these data indicate that diploid and triploid Chinook salmon respond differently to acute thermal stressors.
Collapse
Affiliation(s)
- Noah P Rogozynski
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ivan G Cadonic
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Manuel Soto-Dávila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | - Paul Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Zhao G, Liu Z, Quan J, Lu J, Li L, Pan Y. Ribosome Profiling and RNA Sequencing Reveal Translation and Transcription Regulation under Acute Heat Stress in Rainbow Trout ( Oncorhynchus mykiss, Walbaum, 1792) Liver. Int J Mol Sci 2024; 25:8848. [PMID: 39201531 PMCID: PMC11354268 DOI: 10.3390/ijms25168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) is an important economic cold-water fish that is susceptible to heat stress. To date, the heat stress response in rainbow trout is more widely understood at the transcriptional level, while little research has been conducted at the translational level. To reveal the translational regulation of heat stress in rainbow trout, in this study, we performed a ribosome profiling assay of rainbow trout liver under normal and heat stress conditions. Comparative analysis of the RNA-seq data with the ribosome profiling data showed that the folding changes in gene expression at the transcriptional level are moderately correlated with those at the translational level. In total, 1213 genes were significantly altered at the translational level. However, only 32.8% of the genes were common between both levels, demonstrating that heat stress is coordinated across both transcriptional and translational levels. Moreover, 809 genes exhibited significant differences in translational efficiency (TE), with the TE of these genes being considerably affected by factors such as the GC content, coding sequence length, and upstream open reading frame (uORF) presence. In addition, 3468 potential uORFs in 2676 genes were identified, which can potentially affect the TE of the main open reading frames. In this study, Ribo-seq and RNA-seq were used for the first time to elucidate the coordinated regulation of transcription and translation in rainbow trout under heat stress. These findings are expected to contribute novel data and theoretical insights to the international literature on the thermal stress response in fish.
Collapse
Affiliation(s)
| | - Zhe Liu
- Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.Q.); (J.L.); (L.L.); (Y.P.)
| | | | | | | | | |
Collapse
|
7
|
Ni Q, Fan Y, Xiao S, Lu L. Effect of Heat Shock Treatment on the Virulence of Grass Carp Reovirus in Rare Minnow Gobiocypris rarus. Viruses 2024; 16:921. [PMID: 38932213 PMCID: PMC11209515 DOI: 10.3390/v16060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The mode and outcome of fish-virus interactions are influenced by many abiotic factors, among which water temperature is especially important in poikilothermic fish. Rare minnow Gobiocypris rarus is a eurythermal small cyprinid fish that is sensitive to infection with genotype II grass carp reovirus (GCRV). HSP70, a conservative and key player in heat shock response, is previously identified as an induced pro-viral factor during GCRV infection in vitro. Here, rare minnow was subjected to heat shock treatment (HST), 1 h treatment at 32 °C followed by reverting to a normal temperature of 24 °C, and subsequently challenged with GCRV-II at a dosage of 1 × LD50. The effect of HST on GCRV virulence in vivo was evaluated by calculating virus-associated mortality and viral load in both dead and survival fish. The results revealed that HST enhanced the mortality of rare minnow infected with GCRV; the fact that viral loads in the tissue samples of HST-treated fish were significantly higher than those in samples of the control group at 6, 8 d p.i. reflected a faster infection process due to HST. Quantitative gene expression analysis was further employed to show that the expression levels of Hsp70 in intestine and liver tissues from the HST group declined faster than muscle tissue after HST. HST W/O GCRV challenge upregulated proinflammatory cytokines such as MyD88 and Nf-κB, which was in consistence with the inflammation observed in histopathological analysis. This study shed light on the complexity of the interaction between fish abiotic and biotic stress response, which suggested that HST, an abiotic stress, could enhance the virulence of GCRV in Gobiocypris rarus that involved modulating the gene expression of host heat shock, as well as a pro-inflammatory response.
Collapse
Affiliation(s)
- Qinwei Ni
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Yanchang Fan
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Liqun Lu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
- Department of Aquatic Medicine, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Dettleff P, Toloza C, Fuentes M, Aedo J, Zuloaga R, Estrada JM, Molina A, Valdés JA. Gills de novo assembly reveals oxidative stress, unfolded protein, and immune response on red cusk-eel (Genypterus chilensis) under thermal stress. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106440. [PMID: 38479297 DOI: 10.1016/j.marenvres.2024.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
The heat waves on the South Pacific coast could lead to thermal stress in native fish. The red cusk-eel (Genypterus chilensis) is relevant for Chilean artisanal fisheries and aquaculture diversification. This study examined the effect of high-temperature stress in the gills of G. chilensis in control (14 °C) and high-temperature stress (19 °C) conditions. High-temperature stress induces a significant increase in gills cortisol levels. Additionally, oxidative damage was observed in gills (protein carbonylation and lipoperoxidation). RNA-seq data was used to build the first transcriptome assembly of gills in this species (23,656 annotated transcripts). A total of 1138 down-regulated and 1531 up-regulated transcripts were observed in response to high-temperature stress in gills. The enrichment analysis showed immune response and replication enriched processes (on down-regulated transcripts), and processes related to the folding of proteins, endoplasmic reticulum, and transporter activity (on up-regulated transcripts). The present study showed how gills could be affected by high-temperature stress.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Carla Toloza
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile.
| |
Collapse
|
9
|
Cheng X, Li F, Kumilamba G, Liao J, Cao J, Sun J, Liu Q. Transcriptome analysis in hepatopancreases reveals the response of domesticated common carp to a high-temperature environment in the agricultural heritage rice-fish system. Front Physiol 2023; 14:1294729. [PMID: 38028756 PMCID: PMC10663232 DOI: 10.3389/fphys.2023.1294729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Qingtian paddy field carp (PF-carp) is a local carp cultivated in the paddy field of Qingtian, Zhejiang. This rice-fish co-culture system has been recognized as one of the Globally Important Agriculture Heritage Systems (GIAHS). PF-carp has been acclimatized to the high-temperature environment of shallow paddy fields after several centuries of domestication. To reveal the physiological and molecular regulatory mechanisms of PF-carp, we chose to use 28°C as the control group and 34°C as the treatment group. We measured biochemical parameters in their serum and hepatopancreases and also performed transcriptome sequencing analysis. Compared with the control group, the serum levels of malondialdehyde (MDA), glucose (GLU), glutathione peroxidase (GSH-Px), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) show no significant change. In addition, superoxide dismutase (SOD), GSH-Px, and CAT also show no significant change in hepatopancreases. We identified 1,253 differentially expressed genes (DEGs), and their pathway analysis revealed that heat stress affected AMPK signaling pathway, protein export, and other biological processes. It is worth noting that protein processing in the endoplasmic reticulum (ER) was the most significantly enriched pathway identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA). Significantly higher levels of HSP40, HSP70, HSP90, and other ubiquitin ligase-related genes were upregulated. In summary, heat stress did not lead to tissue damage, inflammation, oxidative stress, and ER stress in the hepatopancreases of PF-carp. This study provides valuable insights into the adaptation mechanism of this species to the high-temperature environment of paddy fields.
Collapse
Affiliation(s)
- Xiangbing Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Fangcheng Li
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Gilbert Kumilamba
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiayi Liao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiangwei Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiamin Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Volkova AA, Avezova TN, Glyzina OY, Sakirko MV, Tolstikova LI, Sukhanova LV. Thermal Preconditioning Alters the Stability of Hump-Snout Whitefish ( Coregonus fluviatilis) and Its Hybrid Form, Showing Potential for Aquaculture. BIOLOGY 2023; 12:1348. [PMID: 37887058 PMCID: PMC10603914 DOI: 10.3390/biology12101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
One of the little-studied ways that climate warming or temperature increases in aquaculture could affect aquatic animals is through accelerated aging. This study is dedicated to understanding the principles of molecular and cellular aging in the target tissues of juvenile whitefishes (Yenisei hump-snout whitefish and its hybrid) under the influence of acute heat stress (up to 26 °C), and the effects of thermal preconditioning as pre-adaptation. Non-adapted stressed hump-snout whitefish showed a higher induction threshold for functionally active mitochondria in the blood and a decrease in telomerase activity in the liver after heat shock exposure as a long-term compensatory response to prevent telomere shortening. However, we observed heat-induced telomere shortening in non-adapted hybrids, which can be explained by a decrease in mitochondrial membrane stability and a gradual increase in energy demand, leading to a decrease in protective telomerase activity. The pre-adapted groups of hump-snout whitefish and hybrids showed a long-term or delayed response of telomerase activity to heat shock, which served as a therapeutic mechanism against telomere shortening. We concluded that the telomerase and telomere responses to thermal stress demonstrate plasticity of tolerance limits and greater stability in hump-snout whitefish compared with hybrids.
Collapse
Affiliation(s)
- Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, 664033 Irkutsk, Russia; (V.M.Y.); (A.A.V.); (T.N.A.); (O.Y.G.); (M.V.S.); (L.I.T.); (L.V.S.)
| | - Anastasia G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, 664033 Irkutsk, Russia; (V.M.Y.); (A.A.V.); (T.N.A.); (O.Y.G.); (M.V.S.); (L.I.T.); (L.V.S.)
| | | | | | | | | | | | | | | |
Collapse
|