1
|
Du X, Yu H, Wang Y, Liu J, Zhang Q. Comparative Studies on Duplicated foxl2 Paralogs in Spotted Knifejaw Oplegnathus punctatus Show Functional Diversification. Genes (Basel) 2023; 14:1847. [PMID: 37895196 PMCID: PMC10606028 DOI: 10.3390/genes14101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
As a member of the forkhead box L gene family, foxl2 plays a significant role in gonadal development and the regulation of reproduction. During the evolution of deuterostome, whole genome duplication (WGD)-enriched lineage diversifications and regulation mechanisms occurs. However, only limited research exists on foxl2 duplication in teleost or other vertebrate species. In this study, two foxl2 paralogs, foxl2 and foxl2l, were identified in the transcriptome of spotted knifejaw (Oplegnathus punctatus), which had varying expressions in the gonads. The foxl2 was expressed higher in the ovary, while foxl2l was expressed higher in the testis. Phylogenetic reconstruction, synteny analysis, and the molecular evolution test confirmed that foxl2 and foxl2l likely originated from the first two WGD. The expression patterns test using qRT-PCR and ISH as well as motif scan analysis revealed evidence of potentially functional divergence between the foxl2 and foxl2l paralogs in spotted knifejaw. Our results indicate that foxl2 and foxl2l may originate from the first two WGD, be active in transcription, and have undergone functional divergence. These results shed new light on the evolutionary trajectories of foxl2 and foxl2l and highlights the need for further detailed functional analysis of these two duplicated paralogs.
Collapse
Affiliation(s)
- Xinxin Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Haiyang Yu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| |
Collapse
|
2
|
Lin F, Tong F, He Q, Xiao S, Liu X, Yang H, Guo Y, Wang Q, Zhao H. In vitro effects of androgen on testicular development by the AR-foxl3-rec8/fbxo47 axis in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 292:113435. [PMID: 32057909 DOI: 10.1016/j.ygcen.2020.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
In orange-spotted grouper, androgen can promote the development of testis and spermatogenesis, but the effect of androgen on testis development is unclear. Forkhead box L 3 (Foxl3) is important in the development of fish testis. Rec8 and fbxo47 are involved in meiosis, which impacts spermatogenesis. The present study investigated the plausible role of testis development through the Foxl3 transcriptional regulation of rec8 and fbxo47. The results of tissue distribution showed that rec8 and fbxo47 are highly expressed in gonad. In addition, the highest expression of foxl3, rec8, and fbxo47 was in the testis and intersex compared with the other stages of gonadal development, suggesting that foxl3, rec8, and fbxo47 are important in testis development. In addition, by using dual-luciferase assays, we found that the androgen can increase foxl3 promoter activity and Foxl3 can upregulate rec8 and fbxo47 promoter activity. Furthermore, the addition of β-testosterone significantly increased foxl3, rec8, and fbxo47 promoter activity. Together, these results suggest that foxl3 plays a decisive role in testis development by regulating the expression of rec8 or fbxo47 and imply that AR-foxl3-rec8/fbxo47 affects the testis development pathway.
Collapse
Affiliation(s)
- Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Feng Tong
- South China Agricultural University Hospital, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Liang ZK, Pang R, Dong Y, Sun ZX, Ling Y, Zhang WQ. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper. INSECT SCIENCE 2018; 25:726-738. [PMID: 28459131 DOI: 10.1111/1744-7917.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field.
Collapse
Affiliation(s)
- Zhi-Kun Liang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Xiang Sun
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yan Ling
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
von Schalburg KR, Rondeau EB, Leong JS, Davidson WS, Koop BF. Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Res Notes 2018; 11:639. [PMID: 30176937 PMCID: PMC6122464 DOI: 10.1186/s13104-018-3749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Various stages of mRNA processing are necessary for functionally important genes required during late-stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate translation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and function). Results We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for localization and function within the paternal gamete. Electronic supplementary material The online version of this article (10.1186/s13104-018-3749-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben F Koop
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
5
|
Pérez C, Araneda C, Estay F, Díaz NF, Vizziano-Cantonnet D. Sex hormone-binding globulin b expression in the rainbow trout ovary prior to sex differentiation. Gen Comp Endocrinol 2018; 259:165-175. [PMID: 29180105 DOI: 10.1016/j.ygcen.2017.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Salmonids have two sex hormone-binding globulin (Shbg) paralogs. Shbga is mainly expressed in the liver, while Shbgb is secreted by the granulosa cells of the rainbow trout ovary. Coexpression of shbgb and the gonadal aromatase cyp19a1a mRNAs been observed in granulosa cells, suggesting a physiological coordination between Shbgb expression and estrogen synthesis. As estrogens are essential for female sex determination in the fish ovary, we propose that Shbgb participates in early ovarian differentiation, either by binding with estrogen or through another mechanism that remains to be discovered. To elucidate this potential role, monosex populations of female trout were studied during the molecular ovarian differentiation period (28-56 dpf). shbgb mRNA expression was measured using qPCR and compared with expression of genes for other ovarian markers (cyp19a1a, foxl2, follistatin, and estrogen receptors). shbgb transcript expression was detected during the final stages of embryonic development (21-26 dpf) and during molecular ovarian differentiation (32-52 dpf) after hatching (which occurred at 31 dpf). In situ hybridization localized shbgb transcription to the undifferentiated ovary at 42 dpf, and shbgb and cyp19a1a mRNA showed similar expression patterns. These results suggest that Shbgb is involved in early ovarian differentiation, supporting an important role for the salmonid shbgb gene in sex determination.
Collapse
Affiliation(s)
- Claudio Pérez
- Laboratorio de Genética y Biotecnología en Acuicultura, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa #11315, Santiago de, Chile; Programa Cooperativo de Doctorado en Acuicultura, Escuela de Postgrado, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa #11315, Santiago de, Chile
| | - Cristian Araneda
- Laboratorio de Genética y Biotecnología en Acuicultura, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa #11315, Santiago de, Chile.
| | - Francisco Estay
- Piscicultura Huililco Ltda, Camino a Caburgua km 17, Pucón IX Región, Chile
| | - Nelson F Díaz
- Laboratorio de Genética y Biotecnología en Acuicultura, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa #11315, Santiago de, Chile
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
6
|
Yang YJ, Wang Y, Li Z, Zhou L, Gui JF. Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 2017; 205:1551-1572. [PMID: 28193729 PMCID: PMC5378113 DOI: 10.1534/genetics.116.199133] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleosts, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation, and maintenance. Then, homozygous foxl2a mutants (foxl2a-/-) and foxl2b mutants (foxl2b-/-) were constructed and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling, and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a-/- and foxl2b-/- mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal, respectively, in adult females. In foxl2a-/- female mutants, sox9a-amh/cyp19a1a signaling was upregulated at 150 days postfertilization (dpf) and subsequently oocyte apoptosis was triggered after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several 100-fold in foxl2b-/- mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a-/-/foxl2b-/- double mutants were constructed in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b-/- and foxl2a-/- mutants, we proposed a model in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a.
Collapse
Affiliation(s)
- Yan-Jing Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chai T, Cui F, Mu X, Yang Y, Wang C, Qiu J. Exploration of Stereoselectivity in Embryo-Larvae (Danio rerio) Induced by Chiral PCB149 at the Bioconcentration and Gene Expression Levels. PLoS One 2016; 11:e0155263. [PMID: 27158819 PMCID: PMC4861327 DOI: 10.1371/journal.pone.0155263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
This paper was designed to study stereoselective enrichment and changes in gene expression when zebrafish (Danio rerio) embryo-larvae were exposed to racemic, (-)- or (+)- PCB149 (2,2’,3,4’,5’,6- hexachlorobiphenyl). Based on bioconcentration analysis, non-racemic enrichment was significantly observed after racemic exposure. No isomerization between the two isomers was found after (-)/(+)-PCB149 exposure. Furthermore, based on gene expression-data mining, CYPs genes (cyp2k6, cyp19a1b, and cyp2aa4) were differential genes after (+)-PCB149 exposure. No obvious differences of dysregulation of gene expression caused by racemic and (-)-PCB149, were observed in embryo-larvae. The above results suggested that (-)-PCB149 could be considered as the main factor causing the dysregulation of gene expression in embryo-larvae after racemic exposure; and (+)-PCB149 should be pursued apart from the racemate, when considering the toxicity of chiral PCB149. Thus, the information in our study could provide new insights to assess the environmental risk of chiral PCBs in aquatic systems.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing, China
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (CW); (JQ)
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
- * E-mail: (CW); (JQ)
| |
Collapse
|
9
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Liu H, Mu X, Gui L, Su M, Li H, Zhang G, Liu Z, Zhang J. Characterization and gonadal expression of FOXL2 relative to Cyp19a genes in spotted scat Scatophagus argus. Gene 2014; 561:6-14. [PMID: 25550048 DOI: 10.1016/j.gene.2014.12.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 01/12/2023]
Abstract
In the present study, we cloned the full-length cDNAs of FOXL2, Cyp19a1a and Cyp19a1b and analyzed their expression patterns during gonadal development in spotted scat, Scatophagus argus. All three genes were expressed in ovaries and testes but showed sexual dimorphism. At early stages of gonadal development, the expression of FOXL2 in ovaries was higher than testes. FOXL2 expression deceased gradually as gonadal development continued, and reached the lowest level at the mature stage. Cyp19a1a and Cyp19a1b were expressed coordinately with FOXL2, except at the early vitellogenic stage in the ovary. The expression of FOXL2, Cyp19a1a and Cyp19a1b was mainly localized in granulosa cells of ovaries. In S. argus testes, strong expression of FOXL2 gene was observed in the interstitial cells including tubules and Leydig cells, while Cyp19a1a and Cyp19a1b were mainly expressed in Sertoli cells throughout gametogenesis. These results show that FOXL2 plays an essential role in sexual development, and imply that it may regulate Cyp19a1a and Cyp19a1b expression in S. argus.
Collapse
Affiliation(s)
- Huifen Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Maoliang Su
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenhao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Gennotte V, Mélard C, D'Cotta H, Baroiller JF, Rougeot C. The sensitive period for male-to-female sex reversal begins at the embryonic stage in the Nile tilapia and is associated with the sexual genotype. Mol Reprod Dev 2014; 81:1146-58. [DOI: 10.1002/mrd.22436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Gennotte
- Aquaculture Research and Education Center (CEFRA); AFFISH-RC; University of Liège; Tihange Belgium
| | - Charles Mélard
- Aquaculture Research and Education Center (CEFRA); AFFISH-RC; University of Liège; Tihange Belgium
| | - Helena D'Cotta
- UMR Intrepid; Department Persyst; CIRAD; Campus International de Baillarguet; Montpellier France
| | - Jean-François Baroiller
- UMR Intrepid; Department Persyst; CIRAD; Campus International de Baillarguet; Montpellier France
| | - Carole Rougeot
- Aquaculture Research and Education Center (CEFRA); AFFISH-RC; University of Liège; Tihange Belgium
| |
Collapse
|
12
|
Pang R, Li Y, Dong Y, Liang Z, Zhang Y, Zhang W. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2014; 23:768-778. [PMID: 25124988 DOI: 10.1111/imb.12121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests.
Collapse
Affiliation(s)
- R Pang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
13
|
von Schalburg KR, Gowen BE, Messmer AM, Davidson WS, Koop BF. Sex-specific expression and localization of aromatase and its regulators during embryonic and larval development of Atlantic salmon. Comp Biochem Physiol B Biochem Mol Biol 2014; 168:33-44. [DOI: 10.1016/j.cbpb.2013.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/03/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023]
|
14
|
Borday C, Merlet J, Racine C, Habert R. Expression and localization of aromatase during fetal mouse testis development. Basic Clin Androl 2013; 23:12. [PMID: 25780574 PMCID: PMC4349472 DOI: 10.1186/2051-4190-23-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both androgens and estrogens are necessary to ensure proper testis development and function. Studies on endocrine disruptors have highlighted the importance of maintaining the balance between androgens and estrogens during fetal development, when testis is highly sensitive to environmental disturbances. This balance is regulated mainly through an enzymatic cascade that converts irreversibly androgens into estrogens. The most important and regulated component of this cascade is its terminal enzyme: the cytochrome p450 19A1 (aromatase hereafter). This study was conducted to improve our knowledge about its expression during mouse testis development. FINDINGS By RT-PCR and western blotting, we show that full-length aromatase is expressed as early as 12.5 day post-coitum (dpc) with maximal expression at 17.5 dpc. Two additional truncated transcripts were also detected by RT-PCR. Immunostaining of fetal testis sections and of gonocyte-enriched cell cultures revealed that aromatase is strongly expressed in fetal Leydig cells and at variable levels in gonocytes. Conversely, it was not detected in Sertoli cells. CONCLUSIONS This study shows for the first time that i) aromatase is expressed from the early stages of fetal testis development, ii) it is expressed in mouse gonocytes suggesting that fetal germ cells exert an endocrine function in this species and that the ratio between estrogens and androgens may be higher inside gonocytes than in the interstitial fluid. Furthermore, we emphasized a species-specific cell localization. Indeed, previous works found that in the rat aromatase is expressed both in Sertoli and Leydig cells. We propose to take into account this species difference as a new concept to better understand the changes in susceptibility to Endocrine Disruptors from one species to another.
Collapse
Affiliation(s)
- Caroline Borday
- Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Univ. Paris Diderot, Sorbonne Paris Cité, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; Unit of Stem Cells and Radiation, LDG / SCSR / iRCM / DSV, INSERM, Centre CEA, BP6, Unité 967, F-92265 Fontenay aux Roses, France
| | - Jorge Merlet
- Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Univ. Paris Diderot, Sorbonne Paris Cité, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; Unit of Stem Cells and Radiation, LDG / SCSR / iRCM / DSV, INSERM, Centre CEA, BP6, Unité 967, F-92265 Fontenay aux Roses, France
| | - Chrystèle Racine
- Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Univ. Paris Diderot, Sorbonne Paris Cité, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; Unit of Stem Cells and Radiation, LDG / SCSR / iRCM / DSV, INSERM, Centre CEA, BP6, Unité 967, F-92265 Fontenay aux Roses, France
| | - René Habert
- Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Univ. Paris Diderot, Sorbonne Paris Cité, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; Unit of Stem Cells and Radiation, LDG / SCSR / iRCM / DSV, INSERM, Centre CEA, BP6, Unité 967, F-92265 Fontenay aux Roses, France
| |
Collapse
|
15
|
Mu WJ, Wen HS, Li JF, He F. Cloning and expression analysis of Foxl2 during the reproductive cycle in Korean rockfish, Sebastes schlegeli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1419-1430. [PMID: 23546994 DOI: 10.1007/s10695-013-9796-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
Foxl2 is a member of the winged helix/forkhead family of transcription factors and is known to regulate ovarian aromatase, which plays a crucial role in ovarian differentiation. To address the role of Foxl2 in gonads and brain during gonadal development, we isolated the full-length cDNA of Foxl2 and analyzed its spatiotemporal expression patterns in the viviparous teleost Korean rockfish, Sebastes schlegeli. Tissue distribution pattern revealed that the Foxl2 was detected in the liver, fat, gill, brain, and ovary, but could hardly be found in the testis. Reverse transcriptase PCR suggested that Foxl2 in Korean rockfish may involve in ovary development in the study of expression level during gonads development. It also revealed that the stage of highest expression level for Foxl2 was almost much earlier than cyp19a1a and cyp19a1b during the gonadal development stage in gonads and brain except for cyp19a1a in brain. Furthermore, the expression pattern of Foxl2 as well as aromatases may imply the role of Foxl2 in the up-regulation of aromatases not only in the female fish but also in male.
Collapse
Affiliation(s)
- Wei J Mu
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | | | | | |
Collapse
|
16
|
Crespo B, Lan-Chow-Wing O, Rocha A, Zanuy S, Gómez A. foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. Gen Comp Endocrinol 2013; 194:81-93. [PMID: 24045113 DOI: 10.1016/j.ygcen.2013.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022]
Abstract
FOXL2 is a forkhead transcription factor involved in mammalian development and regulation of reproduction. Two foxl2 paralogs, foxl2a and foxl2b, have been described in various teleost species and were considered as fish-specific duplicates. Here, we report the isolation and characterization of foxl2a (foxl2) and foxl2b (foxl3) in European sea bass (Dicentrarchus labrax), together with the identification of these two genes in non-teleost genomes. Phylogenetic and synteny analyses indicate that these paralogs originated from an ancient genome duplication event that happened long before the teleost specific duplication. While foxl2/foxl2a has been maintained in most vertebrate lineages, foxl2b, which we propose to rename as foxl3, was repeatedly lost in tetrapods. Gonadal expression patterns of the sea bass genes point to a strong sexual dimorphism, and the mRNA levels of foxl2 in ovary and foxl3 in testis vary significantly during the reproductive cycle. When overexpressed in cultured ovarian follicular cells, foxl2 and foxl3 produced functional transcription factors able to control the expression of reproduction-related genes. Taken together, these data suggest that Foxl2 may play a conserved role in ovarian maturation, while Foxl3 could be involved in testis physiology.
Collapse
Affiliation(s)
- Berta Crespo
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), 12595 Torre la Sal, Ribera de Cabanes s/n, Castellón, Spain
| | | | | | | | | |
Collapse
|
17
|
von Schalburg KR, Gowen BE, Rondeau EB, Johnson NW, Minkley DR, Leong JS, Davidson WS, Koop BF. Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:236-46. [DOI: 10.1016/j.cbpb.2013.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
18
|
Jeng SR, Pasquier J, Yueh WS, Chen GR, Lee YH, Dufour S, Chang CF. Differential regulation of the expression of cytochrome P450 aromatase, estrogen and androgen receptor subtypes in the brain-pituitary-ovarian axis of the Japanese eel (Anguilla japonica) reveals steroid dependent and independent mechanisms. Gen Comp Endocrinol 2012; 175:163-72. [PMID: 22107840 DOI: 10.1016/j.ygcen.2011.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022]
Abstract
This study aimed at investigating the role of sexual steroids in the regulation of the expression of the single aromatase gene and steroid receptor subtypes in the brain-pituitary-ovarian axis of the Japanese eel. Unlike other teleosts, which possess duplicated genes for aromatase, cyp19a1a and cyp19a1b, expressed in the gonads and in the brain, respectively, eel species possess a single cyp19a1. Phylogenetic analysis indicated that eel brain/gonadal cyp19a1 branches at the basis of both teleost gonadal cyp19a1a and brain cyp19a1b clades. Female eels treated with catfish pituitary homogenate (CPH) to induce sexual maturation showed an increase in the expression of cyp19a1 and aromatase enzymatic activity in the brain and in the ovaries. Treatments with sex steroids (estradiol-17β, E(2) or testosterone, T) revealed that the increase in cyp19a1 expression in the brain may result from E(2)-specific induction. In contrast, the increase in cyp19a1 expression in the ovaries of CPH-treated eels is a result of steroid-independent control, probably from a direct effect of gonadotropins contained in the pituitary extract. Analysis of the expression of estrogen and androgen receptor subtypes, esr-α, esr-β, ar-α and ar-β, in eels treated with CPH or sex steroids revealed differential regulations. In CPH-treated eels, the expression of esr-α and ar-α was significantly increased in the brain, while the expression of ar-α and ar-β was increased in the ovaries. No change was observed in esr-β in any organ. Steroid treatments induced an upregulation by E(2) of esr-α, but not esr-β expression, in the brain, pituitary and ovaries, while no autoregulation by T of its own receptors could be observed. These results reveal both steroid-dependent and -independent mechanisms in the regulation of cyp19a1 and steroid receptor subtype expression in the eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Marquez EC, Traylor-Knowles N, Novillo-Villajos A, Callard IP. Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:213-25. [PMID: 21664488 DOI: 10.1016/j.cbpc.2011.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
Abstract
Reproductive changes have been observed in painted turtles (Chrysemys picta) from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes playing a significant role in reproduction are affected. cDNA sequences were determined for estrogen receptor alpha and aromatase in the painted turtle. These genes were measured in our study animals using quantitative PCR. Adult turtles were trapped from our study site (Moody Pond, MP) or a reference site (Washburn Pond) and exposed to laboratory environments containing soil from either site. The red-eared slider (Pseudemys scripta), a pond turtle closely related to the painted turtle, was used to assess neonatal exposure to soil and water from the sites. Our results show an increase in hepatic estrogen receptor, which suggests exposure to estrogenic contaminants. Female turtles from MP appear to have a long-term effect on hepatic ER. Other findings were apparent age-dependent differences in expression of aromatase and ER in the brains of neonate and year-old juvenile turtles. Phylogenetic analyses of the cDNA sequences further support the hypothesis that turtles are in a sister clade to birds and crocodilians.
Collapse
Affiliation(s)
- Emily C Marquez
- Boston University, Department of Biology, 5 Cummington St., Boston, MA 02215, USA
| | | | | | | |
Collapse
|
20
|
von Schalburg KR, Yasuike M, Yazawa R, de Boer JG, Reid L, So S, Robb A, Rondeau EB, Phillips RB, Davidson WS, Koop BF. Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 2011; 12:31. [PMID: 21232142 PMCID: PMC3034696 DOI: 10.1186/1471-2164-12-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022] Open
Abstract
Background The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. Results Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. Conclusions We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF β family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 2010; 11:403. [PMID: 20887641 PMCID: PMC2965382 DOI: 10.1186/gb-2010-11-9-403] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.
Collapse
Affiliation(s)
- William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|