1
|
Katayama H, Kaiya H. Identification, chemical synthesis, and receptor binding of a reptilian gecko ghrelin. J Pept Sci 2024; 30:e3567. [PMID: 38268104 DOI: 10.1002/psc.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Ghrelin is known to be a gastrointestinal peptide hormone in vertebrates. It has a unique posttransrational modification, octanoylation, at the Ser side chain of the third position. In this study, we identified the genes encoding ghrelin and its receptor from the Schlegel's Japanese gecko Gekko japonicus. The C-terminal residue of gecko ghrelin was His, although the chemical synthesis method for the O-octanoyl peptide with a C-terminal His residue has not yet been well-established. Acyl-ghrelin has been synthesized using a Ser derivative without side chain protecting group in the solid-phase peptide synthesis, although this synthetic strategy has not yet been well-established. Here we show the efficient synthetic method with minimal side reactions, and G. japonicus ghrelin could be obtained in good yield. This would be useful and applicable to the synthesis of ghrelin from other animal species. The gecko ghrelin receptor was expressed in HEK 293 cells, which was fully responsive to the synthetic gecko ghrelin. These results indicate that the ghrelin system similar to mammals also exists in a reptilian gecko, G. japonicus.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Research Division of Drug Discovery, Grandsoul Research Institute for Immunology Inc., Nara, Japan
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Wada R, Takemi S, Matsumoto M, Iijima M, Sakai T, Sakata I. Molecular cloning and analysis of the ghrelin/GHSR system in Xenopus tropicalis. Gen Comp Endocrinol 2023; 331:114167. [PMID: 36402245 DOI: 10.1016/j.ygcen.2022.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/16/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Ghrelin is a gut-derived peptide with several physiological functions, including feeding, gastrointestinal motility, and hormonal secretion. Recently, a host defense peptide, liver-expressed antimicrobial peptide-2 (LEAP2), was reported as an endogenous antagonist of growth hormone secretagogue receptor (GHS-R). The physiological relevance of the molecular LEAP2-GHS-R interaction in mammals has been explored; however, studies on non-mammals are limited. Here, we report the identification and functional characterization of ghrelin and its related molecules in Western clawed frog (Xenopus tropicalis), a known model organism. We first identified cDNA encoding X. tropicalis ghrelin and GHS-R. RT-qPCR revealed that ghrelin mRNA expression was most abundant in the stomach. GHS-R mRNA was widely distributed in the brain and peripheral tissues, and a relatively strong signal was observed in the stomach and intestine. In addition, LEAP2 was mainly expressed in intestinal tissues at higher levels than in the liver. In functional analysis, X. tropicalis ghrelin and human ghrelin induced intracellular Ca2+ mobilization with EC50 values in the low nanomolar range in CHO-K1 cells expressing X. tropicalis GHS-R. Furthermore, ghrelin-induced GHS-R activation was antagonized with IC50 values in the nanomolar range by heterologous human LEAP2. We also validated the expression of ghrelin and feeding-related factors under fasting conditions. After 2 days of fasting, no changes in ghrelin mRNA levels were observed in the stomach, but GHS-R mRNA levels were significantly increased, associated with significant downregulation of nucb2. In addition, LEAP2 upregulation was observed in the duodenum. These results provide the first evidence that LEAP2 functions as an antagonist of GHS-R in the anuran amphibian X. tropicalis. It has also been suggested that the ghrelin/GHS-R/LEAP2 system may be involved in energy homeostasis in X. tropicalis.
Collapse
Affiliation(s)
- Reiko Wada
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Mio Iijima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan.
| |
Collapse
|
3
|
Chen X, Mi J, Huang H, Wang J, Wu Y, Wu X, Zhang S. Ghrelin and ghrelin receptor (GHSR) in Chinese alligator, alligator sinensis: Molecular characterization, tissue distribution and mRNA expression changes during the active and hibernating periods. Gen Comp Endocrinol 2022; 327:114097. [PMID: 35853503 DOI: 10.1016/j.ygcen.2022.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
The Chinese alligator (Alligator sinensis) is a freshwater crocodilian endemic to China. So far, the endocrine regulation of feeding and growth in Chinese alligator is poorly understood. In this study, the molecular structure and tissue expression profiles of ghrelin and its receptor GHSR in the Chinese alligator were characterized for the first time. The full-length cDNA of ghrelin was 1770 bp, including a 37 bp 5 '-UTR (untranslated region), a 435 bp ORF (open reading frame) and a 1298 bp 3 '-UTR. The ORF encodes a ghrelin precursor, which consists of 145 amino acid residues, including a signal peptide with 52 amino acid residues at the N-terminus, a mature peptide with 28 amino acid residues, and a possibly obestain at the C-terminus. The full-length cDNA of GHSR was 3961 bp, including a 5'-UTR of 375-bp, an ORF of 1059-bp and a 3' -UTR of 2527-bp. The ORF encodes a protein of 352 amino acid residues containing seven transmembrane domains, with multiple N glycosylation modification sites and conserved cysteine residue sites. The active core "GSSF" of Chinese alligator ghrelin was identical to that of mammals and birds, and the ghrelin binding site of GHSR was similar to that of mammals. The amino acid sequences of both ghrelin and GHSR share high identity with American alligator (Alligator mississippiensis) and birds. Ghrelin was highly expressed in cerebrum, mesencephalon, hypothalamus and multiple peripheral tissues, including lung, stomach and intestine, suggesting that it could play functions in paracrine and/or autocrine manners in addition to endocrine manner. GHSR expression level was higher in hypothalamus, epencephalon and medulla oblongata, and moderate in multiple peripheral tissues including lung, kindey, stomach and oviduct, implicating that ghrelin/GHSR system may participate in the regulation of energy balance, food intake, water and mineral balance, gastrointestinal motility, gastric acid secretion and reproduction. During hibernation, the expression of ghrelin and GHSR in the brain was significantly increased, while ghrelin was significantly decreased in heart, liver, lung, stomach, pancreas and ovary, and GHSR was significantly decreased in heart, liver, spleen, lung, kindey, stomach, ovary and oviduct. These temporal changes in ghrelin and GHSR expression could facilitate the physiological adaption to the hibernation of Chinese alligator. Our study could provide basic data for further studies on the regulation of feeding, physiological metabolism and reproduction of Chinese alligator, which could also be useful for the improvement of artificial breeding of this endangered species.
Collapse
Affiliation(s)
- Xianxian Chen
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jicong Mi
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hongbin Huang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yu Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
Small BC, Quiniou SM, Kaiya H, Bledsoe JW, Musungu B. Characterization of a third ghrelin receptor, GHS-R3a, in channel catfish reveals novel expression patterns and a high affinity for homologous ligand. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:1-9. [DOI: 10.1016/j.cbpa.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
|
5
|
Abstract
We are exploring physiological importance of the ghrelin system in vertebrates. This review summarizes current knowledge of the ghrelin system in amphibians. Our study on ghrelin precursor in various amphibians revealed that the third amino acid with acyl modification has changed to threonine (Thr-3) instead of serine (Ser-3) only in the genus, Rana. Functional analyses of the ghrelin receptor in three species of amphibians, Japanese fire belly newt, American bullfrog and Japanese tree frog revealed that ghrelin and GHS-R1a agonists increase intracellular Ca2+ concentration in HEK293 cells expressing each receptor, and that ligand selectivity of ghrelin with Ser-3 and Thr-3 that expected to see in the bullfrog receptor was not found in the two frog receptors, but in the newt receptor. The brain, gastrointestinal tract, kidney and gonad highly express GHS-R1a mRNA. In frogs and newt, fasting did not increase GHS-R1a mRNA expression in the brain, but in the stomach. However, intraperitoneal (IP) injection of ghrelin did not affect food intake. A dehydration treatment increased GHS-R1a mRNA expression in the brain, stomach and ventral skin in the tree frog. However, intracerebroventricular (ICV) injection of ghrelin did not affect water absorption. Ghrelin did not influence gastrointestinal motility in in vitro studies using smooth muscle strips of the bullfrog and newt in vitro. These results suggest that the ghrelin system is present in various amphibians, but little is known about the physiological functions except hypophyseal hormone secretion.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| |
Collapse
|
6
|
Kitazawa T, Shimazaki M, Kikuta A, Yaosaka N, Teraoka H, Kaiya H. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt. Gen Comp Endocrinol 2016; 232:51-9. [PMID: 26704852 DOI: 10.1016/j.ygcen.2015.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians.
Collapse
Affiliation(s)
- Takio Kitazawa
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - Misato Shimazaki
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Ayumi Kikuta
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Noriko Yaosaka
- Dept. of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- Dept. of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroyuki Kaiya
- Dept. of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|