1
|
O’Brien J, Mitchell C, Auerbach S, Doonan L, Ewald J, Everett L, Faranda A, Johnson K, Reardon A, Rooney J, Shao K, Stainforth R, Wheeler M, Dalmas Wilk D, Williams A, Yauk C, Costa E. Bioinformatic workflows for deriving transcriptomic points of departure: current status, data gaps, and research priorities. Toxicol Sci 2025; 203:147-159. [PMID: 39499193 PMCID: PMC11775421 DOI: 10.1093/toxsci/kfae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. Although conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. Although different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g. days) compared with apical endpoints from conventional tests (e.g. 90-d subchronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.
Collapse
Affiliation(s)
- Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON J8X 4C6, Canada
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC 22205, United States
| | - Scott Auerbach
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | - Liam Doonan
- Syngenta International Research Centre, Berkshire RG42 6EY, United Kingdom
| | - Jessica Ewald
- Institute of Parasitology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Logan Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, United States
| | - Adam Faranda
- FMC Agricultural Solutions, Newark, DE 19711, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN 46268, United States
| | - Anthony Reardon
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - John Rooney
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health—Bloomington, Indiana University, Bloomington, IN 47405, United States
| | - Robert Stainforth
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew Wheeler
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
2
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
3
|
Krutikova AA, Dementieva NV, Shcherbakov YS, Goncharov VV, Griffin DK, Romanov MN. Polymorphism of Genes Potentially Affecting Growth and Body Size Suggests Genetic Divergence in Wild and Domestic Reindeer ( Rangifer tarandus) Populations. Genes (Basel) 2024; 15:1629. [PMID: 39766896 PMCID: PMC11675441 DOI: 10.3390/genes15121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: A combination of increased human presence in the Arctic zone alongside climate change has led to a decrease in the number of wild reindeer (Rangifer tarandus). Studying the genetic potential of this species will aid in conservation efforts, while simultaneously promoting improved meat productivity in domestic reindeer. Alongside reducing feed costs, increasing disease resistance, etc., acquiring genetic variation information is a crucial task for domestic reindeer husbandry. This study thus identified highly informative molecular genetic markers usable for assessing genetic diversity and breeding purposes in reindeer. Methods: We analyzed gene polymorphism that may potentially affect animal growth and development in populations of wild (Taimyr Peninsula) and domestic reindeer, including Nenets and Evenk breeds. We screened these populations for polymorphisms by sequencing the GH, GHR, LCORL and BMP2 genes. Results: Following generation of gene sequences, we compared the alleles frequency in the surveyed populations and their genetic divergence. Some loci lacked polymorphism in wild reindeer, unlike domestic breeds. This could suggest a selection-driven microevolutionary divergence in domestic reindeer populations. An isolated domestic population from Kolguyev Island appeared to be genetically remote from continental reindeer. Conclusions: Molecular genetic markers associated with economically important traits in reindeer can be further developed using the data obtained. Monitoring wild reindeer populations and better utilizing the genetic potential of domestic animals will depend on a panel of these marker genes. By using this marker panel, the amount of time spent on selection efforts will be greatly reduced to enhance meat performance during reindeer breeding.
Collapse
Affiliation(s)
- Anna A. Krutikova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin 196601, Russia; (A.A.K.); (Y.S.S.)
- Department of Genetic and Reproductive Biotechnologies, Saint Petersburg State University of Veterinary Medicine, Saint Petersburg 196084, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin 196601, Russia; (A.A.K.); (Y.S.S.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin 196601, Russia; (A.A.K.); (Y.S.S.)
| | - Vasiliy V. Goncharov
- Research Institute of Agriculture and Ecology of the Arctic—Branch of the Federal Research Center “Krasnoyarsk Science Center”, Norilsk 663302, Russia;
| | - Darren K. Griffin
- School of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Michael N. Romanov
- School of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Russia
| |
Collapse
|
4
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
5
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren W, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial sleep in short-sleeping Mexican cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.602003. [PMID: 39005273 PMCID: PMC11244998 DOI: 10.1101/2024.07.03.602003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Owen North
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Morgan O'Gorman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Pierce Hutton
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Wes Warren
- Department of Genomics, University of Missouri, Columbia, MO 65201
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
6
|
Gándara L, Durrieu L, Wappner P. Metabolic FRET sensors in intact organs: Applying spectral unmixing to acquire reliable signals. Biol Open 2023; 12:bio060030. [PMID: 37671927 PMCID: PMC10562930 DOI: 10.1242/bio.060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In multicellular organisms, metabolic coordination across multiple tissues and cell types is essential to satisfy regionalized energetic requirements and respond coherently to changing environmental conditions. However, most metabolic assays require the destruction of the biological sample, with a concomitant loss of spatial information. Fluorescent metabolic sensors and probes are among the most user-friendly techniques for collecting metabolic information with spatial resolution. In a previous work, we have adapted to an animal system, Drosophila melanogaster, genetically encoded metabolic FRET-based sensors that had been previously developed in single-cell systems. These sensors provide semi-quantitative data on the stationary concentrations of key metabolites of the bioenergetic metabolism: lactate, pyruvate, and 2-oxoglutarate. The use of these sensors in intact organs required the development of an image processing method that minimizes the contribution of spatially complex autofluorescence patterns, that would obscure the FRET signals. In this article, we show step by step how to design FRET-based sensor experiments and how to process the fluorescence signal to obtain reliable FRET values.
Collapse
Affiliation(s)
- Lautaro Gándara
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Lucía Durrieu
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales–Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Pablo Wappner
- Fundación Instituto Leloir, Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales–Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|
7
|
Groom DJE, Black B, Deakin JE, DeSimone JG, Lauzau MC, Pedro BP, Straight CR, Unger KP, Miller MS, Gerson AR. Flight muscle size reductions and functional changes following long-distance flight under variable humidity conditions in a migratory warbler. Physiol Rep 2023; 11:e15842. [PMID: 37849053 PMCID: PMC10582281 DOI: 10.14814/phy2.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023] Open
Abstract
Bird flight muscle can lose as much as 20% of its mass during a migratory flight due to protein catabolism, and catabolism can be further exacerbated under dehydrating conditions. However, the functional consequences of exercise and environment induced protein catabolism on muscle has not been examined. We hypothesized that prolonged flight would cause a decline in muscle mass, aerobic capacity, and contractile performance. This decline would be heightened for birds placed under dehydrating environmental conditions, which typically increases lean mass losses. Yellow-rumped warblers (Setophaga coronata) were exposed to dry or humid (12 or 80% relative humidity at 18°C) conditions for up to 6 h while at rest or undergoing flight. The pectoralis muscle was sampled after flight/rest or after 24 h of recovery, and contractile properties and enzymatic capacity for aerobic metabolism was measured. There was no change in lipid catabolism or force generation of the muscle due to flight or humidity, despite reductions in pectoralis dry mass immediately post-flight. However, there was a slowing of myosin-actin crossbridge kinetics under dry compared to humid conditions. Aerobic and contractile function is largely preserved after 6 h of exercise, suggesting that migratory birds preserve energy pathways and function in the muscle.
Collapse
Affiliation(s)
- Derrick J. E. Groom
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Betsy Black
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Center for Ecosystem Science and SocietyNorthern Arizona UniversityArizonaFlagstaffUSA
| | - Jessica E. Deakin
- Centre for Animals on the Move, Department of BiologyWestern UniversityOntarioLondonCanada
| | - Joely G. DeSimone
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceMarylandFrostburgUSA
| | - M. Collette Lauzau
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
The Water SchoolFlorida Gulf Coast UniversityFloridaFort MyersUSA
| | - Bradley P. Pedro
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Department of BiologyTufts UniversityMassachusettsMedfordUSA
| | - Chad R. Straight
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | - Kimberly P. Unger
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | - Mark S. Miller
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | | |
Collapse
|
8
|
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, Adameyko I. A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology. Nat Commun 2023; 14:3092. [PMID: 37248239 PMCID: PMC10226981 DOI: 10.1038/s41467-023-38663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
Collapse
Affiliation(s)
- Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany.
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Ruba Mahmoud
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Evgeny E Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65, Stockholm, Sweden
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - David Pajuelo Reguera
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Grabowski
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Miriam E Buhl
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Håkan Axelson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - David Lindgren
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Máté
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Till Koehne
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Peter Boor
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Jan Rozman
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, 4367, Belvaux, Luxembourg
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Zhou Q, Hao B, Cao X, Gao L, Yu Z, Zhao Y, Zhu M, Zhong G, Chi F, Dai X, Mao J, Zhu Y, Rong P, Chen L, Bai X, Ye C, Chen S, Liang T, Li L, Feng XH, Tan M, Zhao B. Energy sensor AMPK gamma regulates translation via phosphatase PPP6C independent of AMPK alpha. Mol Cell 2022; 82:4700-4711.e12. [PMID: 36384136 DOI: 10.1016/j.molcel.2022.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.
Collapse
Affiliation(s)
- Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaolei Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Lin Gao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenyue Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Mingrui Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoxuan Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Fangtao Chi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Mao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yibing Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Liang Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cunqi Ye
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
10
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
11
|
López M. Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends Pharmacol Sci 2022; 43:546-556. [DOI: 10.1016/j.tips.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
|
12
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
13
|
Seebacher F, Beaman J. Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life. J Exp Biol 2022; 225:274636. [PMID: 35254445 DOI: 10.1242/jeb.243214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenotypic plasticity of physiological functions enables rapid responses to changing environments and may thereby increase the resilience of organisms to environmental change. Here, we argue that the principal hallmarks of life itself, self-replication and maintenance, are contingent on the plasticity of metabolic processes ('metabolic plasticity'). It is likely that the Last Universal Common Ancestor (LUCA), 4 billion years ago, already possessed energy-sensing molecules that could adjust energy (ATP) production to meet demand. The earliest manifestation of metabolic plasticity, switching cells from growth and storage (anabolism) to breakdown and ATP production (catabolism), coincides with the advent of Darwinian evolution. Darwinian evolution depends on reliable translation of information from information-carrying molecules, and on cell genealogy where information is accurately passed between cell generations. Both of these processes create fluctuating energy demands that necessitate metabolic plasticity to facilitate replication of genetic material and (proto)cell division. We propose that LUCA possessed rudimentary forms of these capabilities. Since LUCA, metabolic networks have increased in complexity. Generalist founder enzymes formed the basis of many derived networks, and complexity arose partly by recruiting novel pathways from the untapped pool of reactions that are present in cells but do not have current physiological functions (the so-called 'underground metabolism'). Complexity may thereby be specific to environmental contexts and phylogenetic lineages. We suggest that a Boolean network analysis could be useful to model the transition of metabolic networks over evolutionary time. Network analyses can be effective in modelling phenotypic plasticity in metabolic functions for different phylogenetic groups because they incorporate actual biochemical regulators that can be updated as new empirical insights are gained.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
14
|
Wu NC, Rubin AM, Seebacher F. Endocrine disruption from plastic pollution and warming interact to increase the energetic cost of growth in a fish. Proc Biol Sci 2022; 289:20212077. [PMID: 35078359 PMCID: PMC8790379 DOI: 10.1098/rspb.2021.2077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction. Our data reveal a potentially serious emerging problem: increasing water temperatures resulting from climate warming together with endocrine disruption from plastic pollution can impact animal growth efficiency, and hence the dynamics and resilience of animal populations and the services these provide.
Collapse
Affiliation(s)
- Nicholas C. Wu
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M. Rubin
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Levesque DL, Nowack J, Boyles JG. Body Temperature Frequency Distributions: A Tool for Assessing Thermal Performance in Endotherms? Front Physiol 2021; 12:760797. [PMID: 34721082 PMCID: PMC8551754 DOI: 10.3389/fphys.2021.760797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
There is increasing recognition that rather than being fully homeothermic, most endotherms display some degree of flexibility in body temperature. However, the degree to which this occurs varies widely from the relatively strict homeothermy in species, such as humans to the dramatic seasonal hibernation seen in Holarctic ground squirrels, to many points in between. To date, attempts to analyse this variability within the framework generated by the study of thermal performance curves have been lacking. We tested if frequency distribution histograms of continuous body temperature measurements could provide a useful analogue to a thermal performance curve in endotherms. We provide examples from mammals displaying a range of thermoregulatory phenotypes, break down continuous core body temperature traces into various components (active and rest phase modes, spreads and skew) and compare these components to hypothetical performance curves. We did not find analogous patterns to ectotherm thermal performance curves, in either full datasets or by breaking body temperature values into more biologically relevant components. Most species had either bimodal or right-skewed (or both) distributions for both active and rest phase body temperatures, indicating a greater capacity for mammals to tolerate body temperatures elevated above the optimal temperatures than commonly assumed. We suggest that while core body temperature distributions may prove useful in generating optimal body temperatures for thermal performance studies and in various ecological applications, they may not be a good means of assessing the shape and breath of thermal performance in endotherms. We also urge researchers to move beyond only using mean body temperatures and to embrace the full variability in both active and resting temperatures in endotherms.
Collapse
Affiliation(s)
- D L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - J Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - J G Boyles
- Cooperative Wildlife Research Laboratory, Center for Ecology, and School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
16
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
17
|
Dong N, Bandura J, Zhang Z, Wang Y, Labadie K, Noel B, Davison A, Koene JM, Sun HS, Coutellec MA, Feng ZP. Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis. BMC Genomics 2021; 22:18. [PMID: 33407100 PMCID: PMC7789530 DOI: 10.1186/s12864-020-07287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST libraries and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. RESULTS In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. CONCLUSIONS Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yan Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Karine Labadie
- Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, BP5706, 91057, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, 91057, Evry, France
| | - Angus Davison
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK, NG7 2RD, UK
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
19
|
Chevalier RL. Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD. KIDNEY360 2020; 1:863-879. [PMID: 35372951 PMCID: PMC8815749 DOI: 10.34067/kid.0002012020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
Collapse
|
20
|
From “bad infection” to organ failure. Med Klin Intensivmed Notfmed 2020; 115:1-3. [DOI: 10.1007/s00063-020-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022]
|
21
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
22
|
The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Med Klin Intensivmed Notfmed 2020; 115:4-9. [PMID: 32236799 PMCID: PMC7220871 DOI: 10.1007/s00063-020-00673-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. This definition, updated in 2016, shifted the conceptual focus from exclusive attention to the systemic inflammatory response toward the multifactorial tissue damage that occurs during the progression of infection to sepsis and shock. Whereas targeting the inflammatory host response to infection did not translate into improved clinical management of sepsis, recent findings might shed new light on the maladaptive host–pathogen interaction in sepsis and pave the way for “theranostic” interventions. In addition to the well-known resistance responses of the immune system that result in pathogen clearance, “disease tolerance” has recently been acknowledged as a coping mechanism of presumably equal importance. We propose that both defense mechanisms, “resistance” and “disease tolerance”, can get out of control in sepsis. Whereas excessive activation of resistance pathways propagates tissue damage via immunopathology, an inappropriate “tolerance” might entail immunoparalysis accompanied by fulminant, recurrent or persisting infection. The review introduces key signaling processes involved in infection-induced “resistance” and “tolerance”. We propose that elaboration of these signaling pathways allows novel insights into sepsis-associated tissue damage and repair processes. Moreover theranostic opportunities for the specific treatment of sepsis-related hyperinflammation or immunoparalysis will be introduced. Agents specifically affecting either hyperinflammation or immunoparalysis in the course of sepsis might add to the therapeutic toolbox of personalized care in the field of organ dysfunction caused by infection. (This article is freely available.)
Collapse
|
23
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Zena LA, Dillon D, Hunt KE, Navas CA, Buck CL, Bícego KC. Hormonal correlates of the annual cycle of activity and body temperature in the South-American tegu lizard (Salvator merianae). Gen Comp Endocrinol 2020; 285:113295. [PMID: 31580883 DOI: 10.1016/j.ygcen.2019.113295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 01/29/2023]
Abstract
Life history transitions and hormones are known to interact and influence many aspects of animal physiology and behavior. The South-American tegu lizard (Salvator merianae) exhibits a profound seasonal shift in metabolism and body temperature, characterized by high daily activity during warmer months, including reproductive endothermy in spring, and metabolic suppression during hibernation in winter. This makes S. merianae an interesting subject for studies of interrelationships between endocrinology and seasonal changes in physiology/behavior. We investigated how plasma concentrations of hormones involved in regulation of energy metabolism (thyroid hormones T4 and T3; corticosterone) and reproduction (testosterone in males and estrogen/progesterone in females) correlate with activity and body temperature (Tb) across the annual cycle of captive held S. merianae in semi-natural conditions. In our initial model, thyroid hormones and corticosterone showed a positive relationship with activity and Tb with independent of sex: T3 positively correlated with activity and Tb, while T4 and corticosterone correlated positively with changes in Tb only. This suggests that thyroid hormones and glucocorticoids may be involved in metabolic transitions of annual cycle events. When accounting for sex-steroid hormones, our sex separated models showed a positive relationship between testosterone and Tb in males and progesterone and activity in females. Coupling seasonal endocrine measures with activity and Tb may expand our understanding of the relationship between animal's physiology and its environment. Manipulative experiments are required in order to unveil the directionality of influences existing among abiotic factors and the hormonal signaling of annual cyclicity in physiology/behavior.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, SP, Brazil; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Carlos A Navas
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900 Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
25
|
Histone deacetylase activity mediates thermal plasticity in zebrafish (Danio rerio). Sci Rep 2019; 9:8216. [PMID: 31160672 PMCID: PMC6546753 DOI: 10.1038/s41598-019-44726-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Regulatory mechanisms underlying thermal plasticity determine its evolution and potential to confer resilience to climate change. Here we show that class I and II histone deacetylases (HDAC) mediated thermal plasticity globally by shifting metabolomic profiles of cold acclimated zebrafish (Danio rerio) away from warm acclimated animals. HDAC activity promoted swimming performance, but reduced slow and fast myosin heavy chain content in cardiac and skeletal muscle. HDAC increased sarco-endoplasmic reticulum ATPase activity in cold-acclimated fish but not in warm-acclimated animals, and it promoted cardiac function (heart rate and relative stroke volume) in cold but not in warm-acclimated animals. HDAC are an evolutionarily ancient group of proteins, and our data show that they mediate the capacity for thermal plasticity, although the actual manifestation of plasticity is likely to be determined by interactions with other regulators such as AMP-activated protein kinase and thyroid hormone.
Collapse
|
26
|
50 years of comparative biochemistry: The legacy of Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:1-11. [PMID: 29501788 DOI: 10.1016/j.cbpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada). This Special Issue of CBP brings together manuscripts from symposium attendees and other authors who recognize the role Peter played in the evolution of the discipline. In this article, the symposium organizers and guest editors look back on his career, celebrating his many contributions to research, acknowledging his role in training of generations of graduate students and post-doctoral fellows in comparative biochemistry and physiology.
Collapse
|