1
|
Zhou P, Li H, Li H, Chen Y, Lv Y. A possible important regulatory role of estrogen in obstructive sleep apnea hypoventilation syndrome. Front Med (Lausanne) 2025; 12:1369393. [PMID: 40098932 PMCID: PMC11911188 DOI: 10.3389/fmed.2025.1369393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Obstructive sleep apnea-hypoventilation syndrome (OSAHS) is a prevalent clinical sleep breathing disorder that affects both pediatric and adult populations. If left untreated, OSAHS can induce or aggravate systemic dysfunction across multiple organ systems, with a particularly pronounced impact on cardiovascular health, thereby posing a substantial threat to overall human well-being. Notably, there exists a significant sex disparity in the prevalence and severity of OSAHS, with a higher incidence and greater severity observed in males. However, this disparity tends to diminish post-menopause. Research indicates that sex differences in OSAHS are associated with gonadal function, wherein estrogen exerts a protective effect by modulating pharyngeal muscle tone and mitigating oxidative stress. This regulatory role of estrogen partially reduces the incidence of OSAHS and attenuates its pathological impact. Conversely, OSAHS may adversely affect gonadal function, resulting in decreased estrogen levels, which can exacerbate the condition. This review examines the beneficial role of estrogen in the progression of OSAHS and explores the potential impact of OSAHS on estrogen levels.
Collapse
Affiliation(s)
- Pinyi Zhou
- Department of Sleep Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hongmei Li
- Department of Neurology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hongyan Li
- Department of Sleep Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Chen
- Department of Sleep Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yunhui Lv
- Department of Sleep Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
2
|
Yaqoob MU, Qi Y, Hou J, Zhe L, Zhu X, Wu P, Li Z, Wang M, Li Y, Yue M. Coated cysteamine and choline chloride could be potential feed additives to mitigate the harmful effects of fatty liver hemorrhagic syndrome in laying hens caused by high-energy low-protein diet. Poult Sci 2024; 103:104296. [PMID: 39305615 PMCID: PMC11437759 DOI: 10.1016/j.psj.2024.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
The research aimed to examine the impact of coated cysteamine (CS) and choline chloride (CC) on relieving the pathological effects of fatty liver hemorrhagic syndrome (FLHS) in laying hens. FLHS was induced by a high-energy low-protein (HELP) diet. Ninety laying hens were equally divided into 5 treatments with 6 replicates per treatment (3 hens/replicate). The control treatment (Cont) was fed a basal diet, while the remaining treatments were fed a HELP diet. Under the HELP dietary plan, 4 treatments were set by a 2 × 2 factorial design. Two levels of CS (CS-: 0.00 mg/kg CS; CS+: 100 mg/kg diet) and 2 levels of choline (CC-: 1,182 mg/kg; CC+: 4,124 mg/kg) were set and named CS-CC- (HELP), CS+CC-, CS-CC+ and CS+CC+. The liver of the CS-CC- (HELP) group became yellowish-brown and greasy, with hemorrhages and bleeding spots. Elevated (P < 0.05) plasma and hepatic ALT and AST and hepatic MDA levels, combined with reduced (P < 0.05) plasma and hepatic SOD and GSH-Px activities in the CS-CC- (HELP) group proved that FLHS was successfully induced. Dietary supplementation of CS, CC, or both (CS+CC+) in HELP diets relieved the pathological changes, significantly (P < 0.05) reduced the AST and ALT levels, and strengthened the antioxidant potential in laying hens under FLHS. The highest (P < 0.001) plasma adiponectin concentration was observed in the CS+CC- and lowest in the CS-CC- (HELP) group. In addition, CS and CC supplementation lowers the elevated levels of hepatic T-CHO and TG by increasing the HDL-C and reducing LDL-C levels (P < 0.05) than CS-CC- (HELP) group. CS supplementation, either alone or with CC, helps laying hens restore their egg production. It could be stated that CS and CC supplements could ameliorate the adverse effects of FLHS by regulating antioxidant enzymes activities, modulating the hepatic lipid metabolism, and restoring the production performance in laying hens. Hence, adding CS and CC could be an effective way to reduce FLHS in laying hens.
Collapse
Affiliation(s)
- Muhammad Umar Yaqoob
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Yingying Qi
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Jia Hou
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Li Zhe
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Xiangde Zhu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Peng Wu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Zhefeng Li
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Huang W, Li T, Cai W, Song H, Liu H, Tan B, Zhang S, Zhou M, Yang Y, Dong X. Effects of α-Lipoic Acid Supplementation on Growth Performance, Liver Histology, Antioxidant and Related Genes Expression of Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Antioxidants (Basel) 2024; 13:88. [PMID: 38247512 PMCID: PMC10812574 DOI: 10.3390/antiox13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to assess the impact of α-lipoic acid on the growth performance, antioxidant capacity and immunity in hybrid groupers (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed with a high-lipid diet. Groupers (8.97 ± 0.01 g) were fed six different diets, with α-lipoic acid content in diets being 0, 400, 800, 1200, 1600, and 2000 mg/kg, named S1, S2, S3, S4, S5, and S6, respectively. The results show that the addition of 2000 mg/kg α-lipoic acid in the diet inhibited the growth, weight gain rate (WGR), and specific growth rate (SGR), which were significantly lower than other groups. In serum, catalase (CAT) and superoxide dismutase (SOD) were significantly higher in the S5 group than in the S1 group. In the liver, CAT, SOD and total antioxidative capacity (T-AOC) levels were significantly increased in α-lipoic acid supplemented groups. α-lipoic acid significantly upregulated liver antioxidant genes sod and cat, anti-inflammatory factor interleukin 10 (il10) and transforming growth factor β (tgfβ) mRNA levels. Conclusion: the addition of 2000 mg/kg of α-lipoic acid inhibits the growth of hybrid groupers. In addition, 400-800 mg/kg α-lipoic acid contents improve the antioxidant capacity of groupers and have a protective effect against high-lipid-diet-induced liver oxidative damage.
Collapse
Affiliation(s)
- Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Wenshan Cai
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Hengyang Song
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524000, China
| | - Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524000, China
| |
Collapse
|
4
|
Li X, Wang S, Zhang M, Jiang H, Qian Y, Wang R, Li M. Comprehensive analysis of metabolomics on flesh quality of yellow catfish ( Pelteobagrus fulvidraco) fed plant-based protein diet. Front Nutr 2023; 10:1166393. [PMID: 37125039 PMCID: PMC10140373 DOI: 10.3389/fnut.2023.1166393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background To investigate the mechanism of plant protein components on nutritional value, growth performance, flesh quality, flavor, and proliferation of myocytes of yellow catfish (Pelteobagrus fulvidraco). Methods A total of 540 yellow catfish were randomly allotted into six experimental groups with three replicates and fed six different diets for 8 weeks. Results and Conclusions The replacement of fish meal with cottonseed meal (CM), sesame meal (SEM), and corn gluten meal (CGM) in the diet significantly reduced growth performance, crude protein, and crude lipid, but the flesh texture (hardness and chewiness) was observably increased. Moreover, the flavor-related amino acid (glutamic acid, glycine, and proline) contents in the CM, SEM, and CGM groups of yellow catfish muscle were significantly increased compared with the fish meal group. The results of metabolomics showed that soybean meal (SBM), peanut meal (PM), CM, SEM, and CGM mainly regulated muscle protein biosynthesis by the variations in the content of vitamin B6, proline, glutamic acid, phenylalanine, and tyrosine in muscle, respectively. In addition, Pearson correlation analysis suggested that the increased glutamic acid content and the decreased tyrosine content were significantly correlated with the inhibition of myocyte proliferation genes. This study provides necessary insights into the mechanism of plant proteins on the dynamic changes of muscle protein, flesh quality, and myocyte proliferation in yellow catfish.
Collapse
Affiliation(s)
- Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Ming Li,
| |
Collapse
|
5
|
Zhong H, Lou C, Ren B, Zhou Y. Insulin-like growth factor 1 injection changes gene expression related to amino acid transporting, complement and coagulation cascades in the stomach of tilapia revealed by RNA-seq. Front Immunol 2022; 13:959717. [PMID: 36016944 PMCID: PMC9395620 DOI: 10.3389/fimmu.2022.959717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a key hormone that regulates fish growth. It acts on a variety of organs and regulates multiple signaling pathways. In order to explore the specific effects of IGF-1 on fish nutrient absorption, immune system, and other functions, the present study investigated the transcriptional changes of stomachs in tilapia by IGF injection. The tilapias were divided into two groups which were injected with saline (C group) and IGF-1 (2 μg/g body weight) (I group), respectively. After three times injections, the stomachs from the tested tilapias were collected 7 days post the first injection and the transcriptomes were sequenced by Illumina HiSeqTM 2000 platform. The results showed that a total of 155 DEGs were identified between C and I groups. By gene ontology (GO) enrichment analysis, two GO terms related to absorption function were enriched including organic acid transport, and amino acid transport which contained 6 functional DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that Staphylococcus aureus infection, as well as complement and coagulation cascades pathways were enriched and contained 6 DEGs. Taken together, the present study indicated that IGF-1 injection altered gene expression related to amino acid transporting, complement and coagulation cascades which provides a promise immunopotentiation therapy by IGF-1 in digestive tract of tilapia.
Collapse
Affiliation(s)
- Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Huan Zhong,
| | - Chenyi Lou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Life Science College, Hunan Normal University, Changsha, China
| | - Bingxin Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Life Science College, Hunan Normal University, Changsha, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Life Science College, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Wu P, Chen L, Cheng J, Pan Y, Zhu X, Chu W, Zhang J. Effect of starvation and refeeding on reactive oxygen species, autophagy and oxidative stress in Chinese perch (Siniperca chuatsi) muscle growth. JOURNAL OF FISH BIOLOGY 2022; 101:168-178. [PMID: 35538670 DOI: 10.1111/jfb.15081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
In skeletal muscle, autophagy regulates the development and growth of muscle fibres and maintains the normal muscle metabolism. Under starvation and refeeding conditions, the effect of reactive oxygen species (ROS) levels on skeletal muscle autophagy is still unclear, although the excessive accumulation of ROS has been shown to increase autophagy in cells. The purpose of this study was to explore the effects of starvation and diet after starvation on the autophagy of adult Chinese perch muscle, and to determine the level of ROS in the muscle. We performed zero (Normal control), three and seven starvation treatments on adult Chinese perch, and returned to normal feeding for 3 days after starvation for 7 days. In the muscles of the adult Chinese perch muscle after 3 days of starvation, the autophagy marker protein LC3 and the number of autophagosomes remained basically the same as in the normal feeding situation. However, on starvation for 7 days, the mitochondrial autophagy was sensitive and the number of autophagosomes increased, but the antioxidant-related molecules (malondialdehyde, catalase, glutathione S-transferase, glutathione and anti-superoxide anion) decreased and the accumulation of ROS was obvious. In addition, the extended starvation time also increased the level of LC3 protein. However, by refeeding after starvation this nutritional stress resulted in a decrease in ROS levels and a partial restoration of antioxidant enzyme activity. Our data show that in the adult Chinese perch muscle, starvation could reduce the antioxidant activity through the accumulation of ROS, and that the number of autophagosomes continues to increase. Refeeding after starvation could effectively compensate for the level of ROS, and restore the mRNA abundance of antioxidant genes and the activity of antioxidant enzymes to reduce autophagy and improve feed efficiency. Further research should optimize starvation conditions to reduce autophagy in muscles and maintain normal muscle metabolism.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Chen
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jia Cheng
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yaxiong Pan
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xin Zhu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
7
|
Shao C, Li Y, Chen J, Zheng L, Chen W, Peng Q, Chen R, Yuan A. Physical Exercise Repairs Obstructive Jaundice-Induced Damage to Intestinal Mucosal Barrier Function via H2S-Mediated Regulation of the HMGB1/Toll Like Receptors 4/Nuclear Factor Kappa B Pathway. Front Physiol 2022; 12:732780. [PMID: 35185593 PMCID: PMC8854792 DOI: 10.3389/fphys.2021.732780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine the effect of aerobic exercise on improving damage to intestinal mucosal barrier function caused by obstructive jaundice (OJ) and explore the mechanism. Fifty male KM mice were divided into five groups: sham operation group (S), model group (M), exercise group (TM), DL-propargylglycine + exercise (PT) group, and sodium hydrosulfide + exercise (NT) group. Additionally, mice in S group underwent common bile duct ligation for 48 h to establish a murine obstructive jaundice model. In PT group, propargylglycine (40 mg/kg) was intraperitoneally injected 7 days after surgery. NaHS (50 μmol/kg) was intraperitoneally injected into mice in the NT group 7 days after surgery. The TM group, NT group and PT group exercised on a slope of 0% at a speed of 10 m/min without weight training (30 min/day). HE staining showed that the intestinal mucosa of group M was atrophied and that the villi were broken. The intestinal mucosal structure of mice in the TM group was improved. Serum assays showed that H2S levels were higher in the TM group than in the M group; compared with the levels in the TM group, the PT group levels were decreased and the NT group levels were increased. In addition, aerobic exercise inhibits the HMGB1/TLR4/NF-κB signaling pathway by promoting endogenous H2S production, thereby exerting a protective effect on the intestinal mucosal barrier.
Collapse
|
8
|
Chen H, Jiang D, Li Z, Wang Y, Yang X, Li S, Li S, Yang W, Li G. Comparative Physiological and Transcriptomic Profiling Offers Insight into the Sexual Dimorphism of Hepatic Metabolism in Size-Dimorphic Spotted Scat ( Scatophagus argus). Life (Basel) 2021; 11:life11060589. [PMID: 34205643 PMCID: PMC8233746 DOI: 10.3390/life11060589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
The spotted scat (Scatophagus argus) is an economically important cultured marine fish that exhibits a typical sexual size dimorphism (SSD). SSD has captivated considerable curiosity for farmed fish production; however, up till now the exact underlying mechanism remains largely unclear. As an important digestive and metabolic organ, the liver plays key roles in the regulation of fish growth. It is necessary to elucidate its significance as a downstream component of the hypothalamic-pituitary-liver axis in the formation of SSD. In this study, the liver physiological differences between the sexes were evaluated in S. argus, and the activity of several digestive and metabolic enzymes were affected by sex. Females had higher amylase, protease, and glucose-6-phosphate dehydrogenase activities, while males exhibited markedly higher hepatic lipase and antioxidant enzymes activities. A comparative transcriptomics was then performed to characterize the responsive genes. Illumina sequencing generated 272.6 million clean reads, which were assembled into 79,115 unigenes. A total of 259 differentially expressed genes were identified and a few growth-controlling genes such as igf1 and igfbp1 exhibited female-biased expression. Further analyses showed that several GO terms and pathways associated with metabolic process, particularly lipid and energy metabolisms, were significantly enriched. The male liver showed a more active mitochondrial energy metabolism, implicating an increased energy expenditure associated with reproduction. Collectively, the female-biased growth dimorphism of S. argus may be partially attributed to sexually dimorphic metabolism in the liver. These findings would facilitate further understanding of the nature of SSD in teleost fish.
Collapse
Affiliation(s)
- Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
| | - Yaorong Wang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
| | - Xuewei Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518052, China; (X.Y.); (S.L.)
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518052, China; (X.Y.); (S.L.)
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China;
- Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
- Food and Environmental Engineering Department, Yangjiang Polytechnic, Yangjiang 529566, China
- Correspondence: (W.Y.); (G.L.); Tel.: +86-662-3362800 (W.Y.); +86-759-2383124 (G.L.); Fax: +86-662-3316729 (W.Y.); +86-759-2382459 (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (H.C.); (D.J.); (Z.L.); (Y.W.)
- Correspondence: (W.Y.); (G.L.); Tel.: +86-662-3362800 (W.Y.); +86-759-2383124 (G.L.); Fax: +86-662-3316729 (W.Y.); +86-759-2382459 (G.L.)
| |
Collapse
|
9
|
Shui SS, Yao H, Jiang ZD, Benjakul S, Aubourg SP, Zhang B. The differences of muscle proteins between neon flying squid (Ommastrephes bartramii) and jumbo squid (Dosidicus gigas) mantles via physicochemical and proteomic analyses. Food Chem 2021; 364:130374. [PMID: 34147869 DOI: 10.1016/j.foodchem.2021.130374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Neon flying squid (OB) and jumbo squid (DG) mantles were evaluated to reveal the similarities and differences in their physicochemical features and protein abundances. Microstructural results indicated that the OB mantle exhibited numerous myofibril fragments and disordered microstructures after frozen storage compared with DG tissues. Chemical analysis suggested that freezing resulted in a rapid decrease in myofibrillar protein (MP) content, Ca2+-ATPase activity, and total sulfhydryl content, and promoted the increase in carbonyl content of MPs in both OB and DG. While, DG presented better MP stability than OB muscle after 120 days of frozen storage. Label-free proteomic analysis detected 24 down- and 33 up-regulated differentially abundant proteins (DAPs) in OB and DG mantles. Identified DAPs including isocitrate dehydrogenase and malic enzyme initiated a rapid decrease in the MP properties in OB samples. Moreover, DAPs were related to cytoskeleton function, including paramyosin, tropomyosin, and troponin C, which improved the stability of DG in response to freezing-induced changes.
Collapse
Affiliation(s)
- Shan-Shan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hui Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ze-Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Santiago P Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Vigo 36208, Spain
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
10
|
Low expression of miR-19a-5p is associated with high mRNA expression of diacylglycerol O-acyltransferase 2 (DGAT2) in hybrid tilapia. Genomics 2021; 113:2392-2399. [PMID: 34022348 DOI: 10.1016/j.ygeno.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
DGAT2 (acyl CoA:diacylglycerol acyltransferase 2) is a key and rate-limiting enzyme that catalyzes the final step of triglyceride (TG) synthesis. In this study, hybrid tilapia were generated from Nile tilapia (♀) and blue tilapia (♂) crossing. The TG content levels in the liver of these tilapia were measured. The results showed that the TG content was higher in the hybrid tilapia. In addition, protein and mRNA expression levels in the tilapia livers were determined. Higher hepatic mRNA and protein expression of DGAT2 in the hybrid fish was found. A luciferase reporter assay with HEK293T cells revealed that miRNA-19a-5p targeted the 3'UTR of DGAT2, suggesting a direct regulatory mechanism. Using qRT-PCR, we found that DGAT2 mRNA levels had a negative correlation with miRNA-19a-5p expression in Nile tilapia and hybrid. Taken together, these findings provide evidence that miRNA-19a-5p is involved in TG synthesis in the regulation of lipid metabolism in tilapia.
Collapse
|
11
|
Miao YF, Gao XN, Xu DN, Li MC, Gao ZS, Tang ZH, Mhlambi NH, Wang WJ, Fan WT, Shi XZ, Liu GL, Song SQ. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2021; 100:938-948. [PMID: 33518147 PMCID: PMC7858188 DOI: 10.1016/j.psj.2020.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common noninfectious cause of death in backyard chickens worldwide, which can cause a sudden drop in egg production in the affected flocks and cause huge losses to the laying hens breeding industry. In this study, we prepared polysaccharide from Atractylodes macrocephala Koidz (PAMK) by one-step alcohol precipitation. The structural analysis found that PAMK with a molecular weight of 2.816 × 103 Da was composed of glucose and mannose, in a molar ratio of 0.582 to 0.418. Furthermore, we investigated the hepatoprotective effects of PAMK on high-energy and low-protein (HELP) diet-induced FLHS in laying hens. The results showed that the hens' livers of the HELP diet showed yellowish-brown, greasy, and soft, whereas the supplement of PAMK (200 mg/kg or 400 mg/kg) could alleviate such pathological changes. The liver index, the abdominal fat percentage, and liver injury induced by the HELP diet were reduced in PAMK (200 mg/kg or 400 mg/kg). Supplementing 200 mg/kg or 400 mg/kg PAMK showed improvements of the antioxidant capacity in laying hens. Furthermore, we found that the HELP diet increased the expression of hepatic lipogenesis genes and decreased the expression of fatty acid β-oxidation genes, which could be reversed by 200 mg/kg or 400 mg/kg PAMK supplementation. Nevertheless, there is no difference between the addition of 40 mg/kg PAMK and the HELP group. Collectively, these results showed that PAMK supplements could ameliorate HELP diet-induced liver injury through regulating activities of antioxidant enzymes and hepatic lipid metabolism. Therefore, PAMK could be a potential feedstuff additive to alleviate FLHS in laying hens.
Collapse
Affiliation(s)
- Y F Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X N Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - D N Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - M C Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z S Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z H Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - N H Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W J Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W T Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X Z Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - G L Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - S Q Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Alleviation of the Adverse Effect of Dietary Carbohydrate by Supplementation of Myo-Inositol to the Diet of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10112190. [PMID: 33238508 PMCID: PMC7700398 DOI: 10.3390/ani10112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400 and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT, SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis, glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose phosphate pathway was up-regulated with the increase of MI levels. This study indicates that HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus.
Collapse
|
13
|
Zhong H, Hu J, Zhou Y. Transcriptomic evidence of luteinizing hormone-releasing hormone agonist (LHRH-A) regulation on lipid metabolism in grass carp (Ctenopharyngodon idella). Genomics 2020; 113:1265-1271. [PMID: 32971214 DOI: 10.1016/j.ygeno.2020.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/24/2022]
Abstract
In this study, RNA sequencing was used to identify the hepatic gene expression profile in grass carp associated with luteinizing hormone-releasing hormone agonist (LHRH-A) treatment. A total of 93,912,172 reads were generated by HiSeq 4000 sequencing platform. After filtering, 83,450,860 clean reads were mapped to the reference genome. By calculating the FPKM of genes, 1475 differentially expressed genes were identified. PPAR signaling pathway was enriched with upregulated genes in LHRH-A injection group showing the regulation of the lipid metabolism by LHRH-A. The expression of eight key genes in PPAR signaling pathway was confirmed by qPCR and the results suggested that ACSL4A, ACSL4B, ANGPTL4, LPL, RXRBA and SLC27A1B were significantly stimulated by LHRH-A injection. This investigation provides the evidence that LHRH-A could play a role in lipid metabolism.
Collapse
Affiliation(s)
- Huan Zhong
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510385, China.
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; Life Science College, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|