1
|
Gao D, Wu Y, Zhan Y, Peng L, Zhao L, Cao S, Xue Z, Wang W. Chronic hypoxia drives the occurrence of ferroptosis in liver of fat greening (Hexagrammos otakii) by activating HIF-1α and promoting iron production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117135. [PMID: 39353379 DOI: 10.1016/j.ecoenv.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious effect and damages to aquatic animals. Hexagrammos otakii is usually a victim of hypoxia which caused by high density aquaculture and high nutrient input. The mechanism underlying ferroptosis regulation after hypoxia-stress in liver of H. otakii, however, remains elusive. METHODS For a duration of 15 days, expose the H. otakii to low concentrations of dissolved oxygen (3.4 ± 0.2 mg/L). Detecting alterations in the H. otakii liver tissue by chemical staining, immunohistochemistry, and electron microscopy. The expression variations of relevant genes in the liver of the H. otakii were simultaneously detected using Western blot and qPCR. A correlation analysis was performed between HIF-1α and iron ion expression in the liver of H. otakii following hypoxic stress. RESULTS In this study, we conducted the whole ferroptosis integrated analysis of H. otakii under chronic hypoxic condition. Reactive oxygen species (ROS) are highly accumulated under the hypoxia treatment (Superoxide Dismutase, SOD; Catalase, CAT), and which results in a significantly enhanced of lipid peroxidation (Lipid Peroxidation, LPO; Malondialdehyde, MDA; Aminotransferase, AST; Alanine aminotransferase, ALT) in liver tissue. The HIF-1α signaling is activated to cope with the hypoxia stress through strategies including changing iron ion concentration (Fe3+ and TFR1) to breaking the oxidation balance (GSH and GSH-Px), and enhancing ferroptosis gene expression (GPX4). The expression of genes related to ferroptosis pathway (DMT1, FTH1, STEAP3, ACSL4, γ-GCS, SLC7A11) is significantly upregulated and associated to the expression of iron and HIF-1α. CONCLUSIONS It is demonstrated that the HIF-1α/Fe3+/ROS/GPX4 axis is involved in promoting ferroptosis in fat greening hepatocytes following hypoxia-stress. Ultimately, our findings unveil a process by which hypoxic stress strongly encourages ferroptosis by triggering HIF-1α and boosting iron synthesis.
Collapse
Affiliation(s)
- Dongxu Gao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yiting Wu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ling Zhao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengnan Cao
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Murphy TE, Rees BB. Diverse responses of hypoxia-inducible factor alpha mRNA abundance in fish exposed to low oxygen: the importance of reporting methods. Front Physiol 2024; 15:1496226. [PMID: 39429981 PMCID: PMC11486919 DOI: 10.3389/fphys.2024.1496226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) poses significant challenges to aquatic ecosystems, affecting the behavior, reproduction, and survival of aquatic organisms. Some fishes respond to hypoxia by changes in gene expression, which may be regulated by the hypoxia inducible factor (HIF) family of transcription factors. HIF abundance and activity depends upon the post-translational modification of the alpha protein subunit, although several studies indicate that HIFA mRNA abundance increases in tissues of fishes exposed to hypoxia. This study reviewed reports of laboratory exposures of adult ray-finned fishes to hypoxia and used generalized linear mixed effects models to examine the influence of HIFA gene, tissue sampled, and exposure conditions in explaining the diversity of responses seen in HIFA mRNA abundance. The frequency of hypoxia-induced increases in HIFA mRNA was poorly explained by gene, tissue, or the severity of the hypoxic exposure. Rather, the frequency of reported increases was strongly related to the extent to which studies adhered to guidelines for documenting quantitative real-time PCR methods: the frequency of hypoxia-induced increases in HIFA mRNA decreased sharply in studies with more thorough description of experimental design. Future research should (a) adhere to stringent reporting of experimental design, (b) address the relative paucity of data on HIF2A and HIF3A, and (c) determine levels of HIF alpha protein subunits. By following these recommendations, it is hoped that a more complete understanding will be gained of the role of the HIF family of transcription factors in the response of fish to hypoxia.
Collapse
Affiliation(s)
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| |
Collapse
|
3
|
Murphy TE, Harris JC, Rees BB. Hypoxia-inducible factor 1 alpha protein increases without changes in mRNA during acute hypoxic exposure of the Gulf killifish, Fundulus grandis. Biol Open 2023; 12:bio060167. [PMID: 38116983 PMCID: PMC10805151 DOI: 10.1242/bio.060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023] Open
Abstract
The hypoxia inducible factor 1 (HIF1) is a central regulator of the molecular responses of animals to low oxygen. While the hypoxia-responsiveness of HIF1 is generally attributed to the stabilization of the alpha protein subunit (HIF1α) at low oxygen, several studies on fish report increased tissue levels of HIF1A mRNA during hypoxia, suggesting transcriptional regulation. In the current study, HIF1α protein and HIF1A mRNA were determined in parallel in tissues of Gulf killifish, Fundulus grandis, exposed to short-term hypoxia (24 h at 1 mg O2 l-1). HIF1α protein was higher in brain, ovary, and skeletal muscle from fish exposed to hypoxia compared with normoxic controls by 6 h, and it remained elevated in brain and ovary at 24 h. In contrast, HIF1A mRNA levels were unaffected by hypoxia in any tissue. Moreover, HIF1α protein and HIF1A mRNA levels in the same tissues were not correlated with one another during either normoxia or hypoxia. Hence, an increase in HIF1α protein does not depend upon an increase in HIF1A mRNA during acute exposure to low oxygen in this species. The results support the widely accepted mechanism of post-translational protein stabilization, rather than new transcription, during the initial response of fish to hypoxia.
Collapse
Affiliation(s)
- Taylor E. Murphy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Jasmine C. Harris
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
4
|
Wang Z, Pu D, Zheng J, Li P, Lü H, Wei X, Li M, Li D, Gao L. Hypoxia-induced physiological responses in fish: From organism to tissue to molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115609. [PMID: 39492173 DOI: 10.1016/j.ecoenv.2023.115609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Dissolved oxygen (DO) in water bodies is a prerequisite for fish survival and plays a crucial role in fish growth, development, and physiological processes. However, with increasing eutrophication, greenhouse effects, and extreme weather conditions, DO levels in aquatic environments often become lower than normal. This leads to stress in fish, causing them to exhibit escape behavior, inhibits their growth and development, and causes tissue damage. Moreover, oxidative stress, decreased immune function, and altered metabolism have been observed. Severe hypoxia can cause massive fish mortality, resulting in significant economic losses to the aquaculture industry. In response to hypoxia, fish exhibit a series of behavioral and physiological changes that are self-protective mechanisms formed through long-term evolution. This review summarizes the effects of hypoxic stress on fish, including the asphyxiation point, behavior, growth and reproduction, tissue structure, physiological and biochemical processes, and regulation of gene expression. Furthermore, future research directions are discussed to provide new insights and references.
Collapse
Affiliation(s)
- Zhengxi Wang
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Decheng Pu
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Jishu Zheng
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Peiyuan Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Hongjian Lü
- Research Center of Fishery Resources and Environment, Conservation and Research Center for Aquatic Biodiversity in the Upper Reaches of Yangtze River Ministry of Agriculture and Rural Affairs, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiuli Wei
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Mai Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Dongsheng Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Lihong Gao
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China.
| |
Collapse
|
5
|
Cerra MC, Filice M, Caferro A, Mazza R, Gattuso A, Imbrogno S. Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals. Int J Mol Sci 2023; 24:ijms24021460. [PMID: 36674975 PMCID: PMC9866870 DOI: 10.3390/ijms24021460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aquatic animals are increasingly challenged by O2 fluctuations as a result of global warming, as well as eutrophication processes. Teleost fish show important species-specific adaptability to O2 deprivation, moving from intolerance to a full tolerance of hypoxia and even anoxia. An example is provided by members of Cyprinidae which includes species that are amongst the most tolerant hypoxia/anoxia teleosts. Living at low water O2 requires the mandatory preservation of the cardiac function to support the metabolic and hemodynamic requirements of organ and tissues which sustain whole organism performance. A number of orchestrated events, from metabolism to behavior, converge to shape the heart response to the restricted availability of the gas, also limiting the potential damages for cells and tissues. In cyprinids, the heart is extraordinarily able to activate peculiar strategies of functional preservation. Accordingly, by using these teleosts as models of tolerance to low O2, we will synthesize and discuss literature data to describe the functional changes, and the major molecular events that allow the heart of these fish to sustain adaptability to O2 deprivation. By crossing the boundaries of basic research and environmental physiology, this information may be of interest also in a translational perspective, and in the context of conservative physiology, in which the output of the research is applicable to environmental management and decision making.
Collapse
|
6
|
Mottola G, Nikinmaa M, Anttila K. Copper exposure improves the upper thermal tolerance in a sex-specific manner, irrespective of fish thermal history. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106145. [PMID: 35338914 DOI: 10.1016/j.aquatox.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ectotherms can respond to climate change via evolutionary adaptation, usually resulting in an increase of their upper thermal tolerance. But whether such adaptation influences the phenotypic plasticity of thermal tolerance when encountering further environmental stressors is not clear yet. This is crucial to understand because organisms experience multiple stressors, besides warming climate, in their natural environment and pollution is one of those. Here, we studied the phenotypic plasticity of thermal tolerance in three-spined stickleback populations inhabiting spatially replicated thermally polluted and pristine areas before and after exposing them to a sublethal concentration of copper for one week. We found that the upper thermal tolerance and its phenotypic plasticity after copper exposure did not depend on the thermal history of fish, suggesting that five decades of thermal pollution did not result in evolutionary adaptation to thermal tolerance. The upper thermal tolerance of fish was, on the other hand, increased by ∼ 1.5 °C after 1-week copper exposure in a sex-specific manner, with males having higher plasticity. To our knowledge this is the first study that shows an improvement of the upper thermal tolerance as a result of metal exposure. The results suggest that three-spined sticklebacks are having high plasticity and they are capable of surviving in a multiple-stressor scenario in the wild and that male sticklebacks seem more resilient to fluctuating environmental conditions than female.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland.
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| |
Collapse
|
7
|
Sandra I, Verri T, Filice M, Barca A, Schiavone R, Gattuso A, Cerra MC. Shaping the cardiac response to hypoxia: NO and its partners in teleost fish. Curr Res Physiol 2022; 5:193-202. [PMID: 35434651 PMCID: PMC9010694 DOI: 10.1016/j.crphys.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology. The flexibility of the teleost heart to O2 limitations is illustrated by using cyprinids as hypoxia tolerance models. Major molecular mediators of the teleost cardiac response are discussed with a focus on the nitrergic system. A comparative analysis of gene duplication highlights conserved targets which may orchestrate the cardiac response to hypoxia.
Collapse
|
8
|
Ismailov II, Scharping JB, Andreeva IE, Friedlander MJ. Antarctic teleosts with and without hemoglobin behaviorally mitigate deleterious effects of acute environmental warming. PLoS One 2021; 16:e0252359. [PMID: 34818342 PMCID: PMC8612528 DOI: 10.1371/journal.pone.0252359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies forecast that many ectothermic animals, especially aquatic stenotherms, may not be able to thrive or even survive predicted climate change. These projections, however, generally do not call much attention to the role of behavior, an essential thermoregulatory mechanism of many ectotherms. Here we characterize species-specific locomotor and respiratory responses to acute ambient warming in two highly stenothermic Antarctic Notothenioid fishes, one of which (Chaenocephalus aceratus) lacks hemoglobin and appears to be less tolerant to thermal stress as compared to the other (Notothenia coriiceps), which expresses hemoglobin. At the onset of ambient warming, both species perform distinct locomotor maneuvers that appear to include avoidance reactions. In response to unavoidable progressive hyperthermia, fishes demonstrate a range of species-specific maneuvers, all of which appear to provide some mitigation of the deleterious effects of obligatory thermoconformation and to compensate for increasing metabolic demand by enhancing the efficacy of branchial respiration. As temperature continues to rise, Chaenocephalus aceratus supplements these behaviors with intensive pectoral fin fanning which may facilitate cutaneous respiration through its scaleless integument, and Notothenia coriiceps manifests respiratory-locomotor coupling during repetitive startle-like maneuvers which may further augment gill ventilation. The latter behaviors, found only in Notothenia coriiceps, have highly stereotyped appearance resembling Fixed Action Pattern sequences. Altogether, this behavioral flexibility could contribute to the reduction of the detrimental effects of acute thermal stress within a limited thermal range. In an ecologically relevant setting, this may enable efficient thermoregulation of fishes by habitat selection, thus facilitating their resilience in persistent environmental change.
Collapse
Affiliation(s)
- Iskander I Ismailov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
| | - Jordan B Scharping
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Iraida E Andreeva
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States of America
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
9
|
Mandic M, Joyce W, Perry SF. The evolutionary and physiological significance of the Hif pathway in teleost fishes. J Exp Biol 2021; 224:272213. [PMID: 34533194 DOI: 10.1242/jeb.231936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypoxia-inducible factor (HIF) pathway is a key regulator of cellular O2 homeostasis and an important orchestrator of the physiological responses to hypoxia (low O2) in vertebrates. Fish can be exposed to significant and frequent changes in environmental O2, and increases in Hif-α (the hypoxia-sensitive subunit of the transcription factor Hif) have been documented in a number of species as a result of a decrease in O2. Here, we discuss the impact of the Hif pathway on the hypoxic response and the contribution to hypoxia tolerance, particularly in fishes of the cyprinid lineage, which includes the zebrafish (Danio rerio). The cyprinids are of specific interest because, unlike in most other fishes, duplicated paralogs of the Hif-α isoforms arising from a teleost-specific genome duplication event have been retained. Positive selection has acted on the duplicated paralogs of the Hif-α isoforms in some cyprinid sub-families, pointing to adaptive evolutionary change in the paralogs. Thus, cyprinids are valuable models for exploring the evolutionary significance and physiological impact of the Hif pathway on the hypoxic response. Knockout in zebrafish of either paralog of Hif-1α greatly reduces hypoxia tolerance, indicating the importance of both paralogs to the hypoxic response. Here, with an emphasis on the cardiorespiratory system, we focus on the role of Hif-1α in the hypoxic ventilatory response and the regulation of cardiac function. We explore the effects of the duration of the hypoxic exposure (acute, sustained or intermittent) on the impact of Hif-1α on cardiorespiratory function and compare relevant data with those from mammalian systems.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, 2251 Meyer Hall, University of California Davis, Davis, CA 95616, USA
| | - William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5.,Department of Biology - Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
10
|
O'Brien KM, Joyce W, Crockett EL, Axelsson M, Egginton S, Farrell AP. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. J Exp Biol 2021; 224:268390. [PMID: 34042975 DOI: 10.1242/jeb.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology , University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences , University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
11
|
Giordano D, Corti P, Coppola D, Altomonte G, Xue J, Russo R, di Prisco G, Verde C. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress. Mar Genomics 2020; 57:100831. [PMID: 33250437 DOI: 10.1016/j.margen.2020.100831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/27/2023]
Abstract
In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy.
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Jianmin Xue
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberta Russo
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| |
Collapse
|