1
|
Fabri LM, Moraes CM, Garçon DP, McNamara JC, Faria SC, Leone FA. Primary amino acid sequences of decapod (Na +, K +)-ATPase provide evolutionary insights into osmoregulatory mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111696. [PMID: 39004301 DOI: 10.1016/j.cbpa.2024.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the β-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-β interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - John C McNamara
- Departamento de Biologia Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Fabri LM, Moraes CM, Calixto-Cunha M, Almeida AC, Faleiros RO, Garçon DP, McNamara JC, Faria SC, Leone FA. (Na +, K +)- ATPase kinetics in Macrobrachium pantanalense: highlighting intra- and interspecific variation within the Macrobrachium amazonicum complex. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110987. [PMID: 38740177 DOI: 10.1016/j.cbpb.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto/Universidade de São Paulo, SP, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto/Universidade de São Paulo, SP, Brazil
| | - Marina Calixto-Cunha
- Instituto de Biologia/Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Ariadine C Almeida
- Instituto de Biologia/Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rogério O Faleiros
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus, ES, Brazil
| | - Daniela P Garçon
- Universidade Federal do Triângulo Mineiro, Campus Universitário de Iturama, Iturama, MG, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Centro de Biologia Marinha/Universidade de São Paulo, São Sebastião, SP, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha/Universidade de São Paulo, São Sebastião, SP, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Bozza DC, Freire CA, Prodocimo V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:5-30. [PMID: 37853933 DOI: 10.1002/jez.2757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Decapods occupy all aquatic, and terrestrial and semi-terrestrial environments. According to their osmoregulatory capacity, they can be osmoconformers or osmoregulators (hypo or hyperegulators). The goal of this study is to gather data available in the literature for aquatic decapods and verify if the rare hyporegulatory capacity of decapods is associated with hyper-regulatory capacity. The metric used to quantify osmoregulation was the osmotic capacity (OC), the gradient between external and internal (hemolymph) osmolalities. We employ phylogenetic comparative methods using 83 species of decapods to test the correlation between hyper OC and hypo OC, beyond the ancestral state for osmolality habitat, which was used to reconstruct the colonization route. Our analysis showed a phylogenetic signal for habitat osmolality, hyper OC and hypo OC, suggesting that hyper-hyporegulators decapods occupy similar habitats and show similar hyper and hyporegulatory capacities. Our findings reveal that all hyper-hyporegulators decapods (mainly shrimps and crabs) originated in estuarine waters. Hyper OC and hypo OC are correlated in decapods, suggesting correlated evolution. The analysis showed that species which inhabit environments with intense salinity variation such as estuaries, supratidal and mangrove habitats, all undergo selective pressure to acquire efficient hyper-hyporegulatory mechanisms, aided by low permeabilities. Therefore, hyporegulation can be observed in any colonization route that passes through environments with extreme variations in salinity, such as estuaries or brackish water.
Collapse
Affiliation(s)
- Deivyson Cattine Bozza
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Xu WB, Zhang YM, Li BZ, Lin CY, Chen DY, Cheng YX, Guo XL, Dong WR, Shu MA. Effects of low salinity stress on osmoregulation and gill transcriptome in different populations of mud crab Scylla paramamosain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161522. [PMID: 36634766 DOI: 10.1016/j.scitotenv.2023.161522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Animals living in estuaries suffer from rapid and continuous salinity fluctuations, while the global warming and extreme precipitation aggravate this situation. Osmoregulation is important for estuarine animals adapt to salinity fluctuations. The present study investigated the effects of low salinity stress on osmoregulation and gill transcriptome in two populations of mud crab from Hangzhou Bay and Zhangzhou Bay of China, respectively. Crabs were transferred from salinity 25 ppt to 5 ppt for 96 h. Edematous swelling in gill filaments was caused by low salinity stress and was more serious in Zhangzhou Bay population. Gill Na+/K+-ATPase activity increased (p < 0.01) in both populations under the low salinity stress and was significantly higher (p < 0.01) in Hangzhou Bay population than in Zhangzhou Bay population. According to transcriptome analysis, there were 191 genes differentially expressed under the low salinity stress in gill tissue of both populations. Several ion transport and energy metabolism related pathways, as well as the arginine and proline metabolism pathway, were enriched by these genes. On the other hand, 272 genes were identified to differentially express between two populations under the low salinity stress, but not under the control salinity. The enrichment analysis showed that these genes were mainly related to ion transport, energy metabolism, osmolytes metabolism and methyltransferase activity. In conclusion, the present study suggested that mud crab exploited a combination of extracellular anisosmotic regulation and intracellular isosmotic regulation for osmoregulation under the low salinity stress. Hangzhou Bay population showed a greater osmoregulatory capacity, which is probably due to the enhanced ion transport, energy supply, and osmolytes regulation. Meanwhile, epigenetic modification might also contribute to an inherent osmoregulation ability for Hangzhou Bay population to response to salinity fluctuation rapidly.
Collapse
Affiliation(s)
- Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ling Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
McNamara JC, Maraschi AC, Tapella F, Romero MC. Evolutionary trade-offs in osmotic and ionic regulation and expression of gill ion transporter genes in high latitude, cold clime Neotropical crabs from the 'end of the world'. J Exp Biol 2023; 226:287036. [PMID: 36789831 DOI: 10.1242/jeb.244129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Osmoregulatory findings on crabs from high Neotropical latitudes are entirely lacking. Seeking to identify the consequences of evolution at low temperature, we examined hyperosmotic/hypo-osmotic and ionic regulation and gill ion transporter gene expression in two sub-Antarctic Eubrachyura from the Beagle Channel, Tierra del Fuego. Despite sharing the same osmotic niche, Acanthocyclus albatrossis tolerates a wider salinity range (2-65‰ S) than Halicarcinus planatus (5-60‰ S); their respective lower and upper critical salinities are 4‰ and 12‰ S, and 63‰ and 50‰ S. Acanthocyclus albatrossis is a weak hyperosmotic regulator, while H. planatus hyperosmoconforms; isosmotic points are 1380 and ∼1340 mOsm kg-1 H2O, respectively. Both crabs hyper/hypo-regulate [Cl-] well with iso-chloride points at 452 and 316 mmol l-1 Cl-, respectively. [Na+] is hyper-regulated at all salinities. mRNA expression of gill Na+/K+-ATPase is salinity sensitive in A. albatrossis, increasing ∼1.9-fold at 5‰ compared with 30‰ S, decreasing at 40-60‰ S. Expression in H. planatus is very low salinity sensitive, increasing ∼4.7-fold over 30‰ S, but decreasing at 50‰ S. V-ATPase expression decreases in A. albatrossis at low and high salinities as in H. planatus. Na+/K+/2Cl- symporter expression in A. albatrossis increases 2.6-fold at 5‰ S, but decreases at 60‰ S versus 30‰ S. Chloride uptake may be mediated by increased Na+/K+/2Cl- expression but Cl- secretion is independent of symporter expression. These unrelated eubrachyurans exhibit similar systemic osmoregulatory characteristics and are better adapted to dilute media; however, the expression of genes underlying ion uptake and secretion shows marked interspecific divergence. Cold clime crabs may limit osmoregulatory energy expenditure by hyper/hypo-regulating hemolymph [Cl-] alone, apportioning resources for other energy-demanding processes.
Collapse
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| | - Anieli Cristina Maraschi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Federico Tapella
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| | - Maria Carolina Romero
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
6
|
Fabri LM, Moraes CM, Costa MIC, Garçon DP, Fontes CFL, Pinto MR, McNamara JC, Leone FA. Salinity-dependent modulation by protein kinases and the FXYD2 peptide of gill (Na +, K +)-ATPase activity in the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183982. [PMID: 35671812 DOI: 10.1016/j.bbamem.2022.183982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min-1 mg-1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Carlos F L Fontes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelo R Pinto
- Laboratório de Biopatologia e Biologia Molecular, Universidade de Uberaba, Uberaba, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Salinity-Driven Changes in Behavioral Responses of Catadromous Eriocher sinensis. Animals (Basel) 2022; 12:ani12172244. [PMID: 36077964 PMCID: PMC9454515 DOI: 10.3390/ani12172244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Salinity is an important environmental factor which can influence the behavior of Eriocheir sinensis. In this study, female crabs were more active in a saline environment, especially low salinity stress, and the changes of antennae were obviously different under salinity shifts. Interestingly, E. sinensis had obvious behavioral differences in the high and low salinity stress, suggesting E. sinensis has different behaviors to adapt to the change of water salinity. Abstract The effects of salinity on behavior are far-reaching, and Eriocheir sinensis showed disparate behaviors under different salinity conditions. Female crabs were more active in saline water, especially low salinity stress, which is beneficial for female crabs to escape from the low-salinity environment quickly. Then, antennal movement indicated that antennae might be the main osmoreceptors in E. sinensis, and 65 min might be a good starting time for salinity stress to analyze osmoregulation in crabs. Interestingly, E. sinensis had obvious behavioral differences in the high and low salinity stress, and behaviors were more intense in a salinity dip from salinity 18 to salinity 0. This study analyzed the osmoregulatory process of catadromous E. sinensis in different salinity from the point of osmoregulatory organ and behavioral response. These results will provide a scientific basis for the osmoregulatory mechanism of E. sinensis, which are conducive to evaluating and analyzing the impact of saltwater intrusion in the Yangtze River estuary on resource fluctuation.
Collapse
|
8
|
Zhu S, Yan X, Shen C, Wu L, Tang D, Wang Y, Wang Z. Transcriptome analysis of the gills of Eriocheir sinensis provide novel insights into the molecular mechanisms of the pH stress response. Gene 2022; 833:146588. [PMID: 35598683 DOI: 10.1016/j.gene.2022.146588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Eriocheir sinensis is an important economic species in China, which is easily affected by pH changes. However, the molecular mechanism of the pH stress response in E. sinensis is still unclear. Therefore, this study aimed to examine the molecular response mechanism of E. sinensis based on pH variation surveillance, histopathological evaluation and transcriptomic analyses. Firstly, pH variation surveillance showed that E. sinensis could actively regulate the pH of its environment. Meanwhile, the histopathological evaluation suggested that pH stress seriously damaged the gills, especially at high pH. Finally, transcriptome analysis showed that the expression of genes related to ion transport, immune stress, and energy metabolism significantly changed. Many genes played an important role in the pH response of E. sinensis, such as carbonic anhydrase (CA), mitochondrial proton/calcium exchanger protein (LETM1), recombinant sodium/hydrogen exchanger 3 (SLC9A3/NHE3), heat shock protein 90 alpha family class a member (HSP90A), alkylglycerone phosphate synthase (AGPS), succinate-CoA ligase ADP-forming subunit beta (LSC2), and superoxide dismutase (SOD). Our study revealed the molecular response mechanism of E. sinensis in response to pH stress, thus providing a basis for further research on the molecular mechanism of response to pH stress in aquatic animals.
Collapse
Affiliation(s)
- Shang Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xinyao Yan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu Province, China
| | - Yue Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| |
Collapse
|
9
|
Tseng KY, Tsai JR, Lin HC. A Multi-Species Comparison and Evolutionary Perspectives on Ion Regulation in the Antennal Gland of Brachyurans. Front Physiol 2022; 13:902937. [PMID: 35721559 PMCID: PMC9201427 DOI: 10.3389/fphys.2022.902937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brachyurans inhabit a variety of habitats and have evolved diverse osmoregulatory patterns. Gills, antennal glands and a lung-like structure are important organs of crabs that maintain their homeostasis in different habitats. Species use different processes to regulate ions in the antennal gland, especially those with high terrestriality such as Grapsoidea and Ocypodoidea. Our phylogenetic generalized least square (PGLS) result also suggested that there is a correlation between antennal gland NKA activity and urine-hemolymph ratio for Na+ concentration in hypo-osmotic environments among crabs. Species with higher antennal gland NKA activity showed a lower urine-hemolymph ratio for Na+ concentration under hypo-osmotic stress. These phenomenon may correlate to the structural and functional differences in gills and lung-like structure among crabs. However, a limited number of studies have focused on the structural and functional differences in the antennal gland among brachyurans. Integrative and systemic methods like next generation sequencing and proteomics method can be useful for investigating the differences in multi-gene expression and sequences among species. These perspectives can be combined to further elucidate the phylogenetic history of crab antennal glands.
Collapse
Affiliation(s)
- Kuang-Yu Tseng
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jyuan-Ru Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- *Correspondence: Hui-Chen Lin,
| |
Collapse
|
10
|
Fu L, Xi M, Nicholaus R, Wang Z, Wang X, Kong F, Yu Z. Behaviors and biochemical responses of macroinvertebrate Corbicula fluminea to polystyrene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152617. [PMID: 34963588 DOI: 10.1016/j.scitotenv.2021.152617] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Microplastic, a well-documented emerging contaminant, is widespread in aquatic environments resulting from the production and fragmentation of large plastics items. The knowledge about the chronic toxic effects and behavioral toxicity of microplastics, particularly on freshwater benthic macroinvertebrates, is limited. In this study, adult Asian clams (Corbicula fluminea) were exposed to gradient microplastic solutions for 42 days to evaluate behavioral toxicity and chronic biotoxicity. The results showed that microplastics caused behavior toxicity, oxidative stress, and tissue damage in high-concentration treatments. Siphoning, breathing, and excretion was significantly inhibited (p < 0.05) at high-concentration treatments, suggesting that high-concentration microplastics induced behavioral toxicity in C. fluminea. Malondialdehyde content, superoxide dismutase, catalase, and glutathione reductase activities were significantly enhanced (p < 0.05) and the acetylcholinesterase was significantly inhibited (p < 0.05) throughout the exposure period in high-concentration treatments. Enzymes associated with energy supply were significantly higher at high-concentration microplastics treatments on D7 and D21. However, they recovered to a normal level on D42. The instability of the enzymes indicated that high-concentration microplastics induced oxidative stress and disorder in neurotransmission and energy supply. The gills of C. fluminea in treatments underwent cilia degeneration, which indicated that microplastics caused tissue damage in the gills. The analysis of integrated biomarker response values revealed that high-concentration microplastics led to long-term effects on the health of C. fluminea. In conclusion, continuous exposure to microplastics (10 mg L-1) would damage physical behavior and the antioxidant system of C. fluminea.
Collapse
Affiliation(s)
- Lingtao Fu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Min Xi
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Zhen Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhengda Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Wang Z, Kong F, Fu L, Li Y, Li M, Yu Z. Responses of Asian clams (Corbicula fluminea) to low concentration cadmium stress: Whether the depuration phase restores physiological characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117182. [PMID: 33901982 DOI: 10.1016/j.envpol.2021.117182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The effect of low concentration Cd stress on bivalves is unclear. In this study, Asian clams (Corbicula fluminea) were continuously exposed to 0, 0.05, 0.10, and 0.20 mg/L Cd for 14 d (exposure phase) and to artificial freshwater for 7 d (depuration phase). A total of 16 variables were measured to explore the toxic effects on C. fluminea. All physiological characteristics were significantly inhibited in the treatments (p < 0.05), and the negative effects of Cd did not return to normal levels in the short term. Tissue damage was found in the feet and gills of C. fluminea in all the treatments. On the 7th day (D7), enzyme activity in all the treatments was significantly higher (p < 0.05) than in the control group. Acetylcholinesterase, superoxide dismutase, and catalase activities were enhanced on D14 in all the treatments. However, only glutathione S-transferase activity was significantly higher in all the treatments (p < 0.05) than in the control group on D21. The instability of the enzymes indicated that the adaptability of C. fluminea became stronger throughout the experiment. In each group, the maximum bioaccumulation of Cd followed the order: 0.20 mg/L > 0.05 mg/L > 0.10 mg/L, which might be caused by the filtration capacity of C. fluminea in the 0.05-mg/L group, which was higher than that of the 0.10-mg/L group. Thus, low Cd concentrations effect the physiological characteristics, tissue health, and antioxidant system of C. fluminea and may require a long recovery time to be restored to normal levels.
Collapse
Affiliation(s)
- Zhen Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lingtao Fu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minghui Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengda Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Maraschi AC, Faria SC, McNamara JC. Salt transport by the gill Na -K -2Cl symporter in palaemonid shrimps: exploring physiological, molecular and evolutionary landscapes. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110968. [DOI: 10.1016/j.cbpa.2021.110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
|