1
|
Meng W, Kong L, Abulizi A, Cong J, Sun Z, Chang Y. Sex determination factor, a novel male-linked gene in the sea cucumber Apostichopus japonicus: Molecular characterization, expression patterns and effects of gene knockdown. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111071. [PMID: 39778676 DOI: 10.1016/j.cbpb.2025.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf). The sdf transcript exhibited ubiquitous expression in various adult male tissues, along with dynamic expression patterns in the testis across different developmental stages. Notably, knockdown of the sdf gene through immersion of embryos in its specific vivo-morpholino oligomers (vivo-MO) resulted in significant changes in the expression levels of several sex-related genes including piwi1, vasa, foxl2, and DNMT3. Additionally, a transcriptomic analysis showed that sdf knockdown resulted in significant alterations in multiple biological processes encompassing various sex-related gene ontology terms such as male gonad development, ovarian follicle development, and steroidogenesis. These results provide a molecular foundation for comprehending ORFans in sea cucumbers while offering a valuable method for gene knockdown studies in echinoderms.
Collapse
Affiliation(s)
- Weihan Meng
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Lingnan Kong
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Abudula Abulizi
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jingjing Cong
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; School of Life Science, Liaoning Normal University, Dalian 116029, China
| | - Zhihui Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Yaqing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Li Z, Yang Y. Reproductive Physiology and Molecular Mechanisms Underlying Testicular Development and Spermatogenesis in Echinoderms: A Marine Invertebrate Deuterostomes. Mol Reprod Dev 2025; 92:e70011. [PMID: 39834110 DOI: 10.1002/mrd.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Echinoderms exhibit a wide range of reproductive strategies as adaptations to variable environments. The processes of gonadal development, germ cell differentiation, and spermatogenesis in echinoderms are crucial physiological processes that warrant further in-depth exploration. This review systematically summarizes research from early basic sciences to recent studies on male gonadal development and spermatogenesis, encompassing morphology, histology, physiology, cell biology, developmental biology, and evolutionary biology. We introduce the structural and cellular similarities and differences among model or non-model organisms from five classes of echinoderms to provide insights for future comparative research between higher vertebrates and lower organisms. The regulatory systems involved in echinoderm spermatogenesis are described from various aspects including nutritional supply, environmental factors, neurological influences, endocrinological influences, and hormonal influences. This article aims to elucidate gonadal development and spermatogenesis in echinoderms-organisms at unique evolutionary nodes-providing valuable materials for studying adaptive evolution and developmental biology. Additionally, a comprehensive summary of characterized genes and gene markers associated with testes development and spermatogenesis is provided as useful information for future systematic studies on cell subpopulations. Future studies can focus on molecular changes associated with chromatin remodeling during germ cell development, cellular differentiation, and intercellular communication mediated by receptor-ligand interactions, to further our understanding of biological processes and regulatory networks involved in echinoderm gonadal development and spermatogenesis.
Collapse
Affiliation(s)
- Ziming Li
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Perillo M, Sepe RM, Paganos P, Toscano A, Annunziata R. Sea cucumbers: an emerging system in evo-devo. EvoDevo 2024; 15:3. [PMID: 38368336 PMCID: PMC10874539 DOI: 10.1186/s13227-023-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/24/2023] [Indexed: 02/19/2024] Open
Abstract
A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
Collapse
Affiliation(s)
- Margherita Perillo
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Rosa Maria Sepe
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
4
|
Zhang J, Sun Z, Su W, Wang Z, Meng W, Chang Y. A signal recognition particle receptor gene from the sea cucumber, Apostichopus japonicas. Sci Rep 2023; 13:22973. [PMID: 38151522 PMCID: PMC10752883 DOI: 10.1038/s41598-023-50320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
The signal recognition particle (SRP) system delivers approximately 30% of the proteome to the endoplasmic reticulum (ER) membrane. SRP receptor alpha (SRα) binds to SRP for targeting nascent secreted proteins to the ER membrane in eukaryotic cells. In this study, the SRα homologous gene was identified in the sea cucumber, Apostichopus japonicus (AjSRα). AjSRα codes for 641 amino acids and has 54.94% identity with its mammalian homologs. Like mammalian SRα, it is expected to contain the SRP-alpha N domain, SRP54_N domain, and SRP54 domain. In addition, AjSRα is ubiquitously expressed in adult tissues and exhibits a sexually dimorphic expression pattern, with significantly higher expression in ovaries compared to testes. As a maternal factor, AjSRα can be continuously detected during embryonic development. Importantly, we first attempted to investigate its function by using lentiviral vectors for delivering SRα gene-specific shRNA, and we revealed that lentiviral vectors do not induce an upregulation of immune-related enzymes in sea cucumbers. However, compared to the dsRNA-based RNA interference (RNAi) method, lentivirus-mediated RNAi caused dynamic changes in gene expression at a later time. This study supplied the technical support for studying the functional mechanism of SRα in sea cucumbers.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Weiyi Su
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zengdong Wang
- Shandong Anyuan Aquaculture Co. Ltd, Yantai, 264000, China
| | - Weihan Meng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
6
|
Liu BZ, Cong JJ, Su WY, Hao ZL, Sun ZH, Chang YQ. Identification and functional analysis of Dmrt1 gene and the SoxE gene in the sexual development of sea cucumber, Apostichopus japonicus. Front Genet 2023; 14:1097825. [PMID: 36741310 PMCID: PMC9894652 DOI: 10.3389/fgene.2023.1097825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Members of the Doublesex and Mab-3-related transcription factor (Dmrt) gene family handle various vital functions in several biological processes, including sex determination/differentiation and gonad development. Dmrt1 and Sox9 (SoxE in invertebrates) exhibit a very conserved interaction function during testis formation in vertebrates. However, the dynamic expression pattern and functional roles of the Dmrt gene family and SoxE have not yet been identified in any echinoderm species. Herein, five members of the Dmrt gene family (Dmrt1, 2, 3a, 3b and 5) and the ancestor SoxE gene were identified from the genome of Apostichopus japonicus. Expression studies of Dmrt family genes and SoxE in different tissues of adult males and females revealed different expression patterns of each gene. Transcription of Dmrt2, Dmrt3a and Dmrt3b was higher expressed in the tube feet and coelomocytes instead of in gonadal tissues. The expression of Dmrt1 was found to be sustained throughout spermatogenesis. Knocking-down of Dmrt1 by means of RNA interference (RNAi) led to the downregulation of SoxE and upregulation of the ovarian regulator foxl2 in the testes. This indicates that Dmrt1 may be a positive regulator of SoxE and may play a role in the development of the testes in the sea cucumber. The expression level of SoxE was higher in the ovaries than in the testes, and knocking down of SoxE by RNAi reduced SoxE and Dmrt1 expression but conversely increased the expression of foxl2 in the testes. In summary, this study indicates that Dmrt1 and SoxE are indispensable for testicular differentiation, and SoxE might play a functional role during ovary differentiation in the sea cucumber.
Collapse
|
7
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
Sun JJ, Sun ZH, Wei JL, Ding J, Song J, Chang YQ. Identification and functional analysis of foxl2 and nodal in sea cucumber, Apostichopus japonicus. Gene Expr Patterns 2022; 44:119245. [PMID: 35381371 DOI: 10.1016/j.gep.2022.119245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
Sea cucumber (Apostichopus japonicus) is an important mariculture species in China. To date, the mechanisms of sex determination and differentiation in sea cucumber remain unclear. Identifying sex-specific molecular markers is an effective method for revealing the genetic basis of sex determination and sex differentiation. In this study, foxl2 and nodal homologous genes were identified in A. japonicus. Foxl2 exhibited dynamic and sexually dimorphic expression patterns in the gonads, with prominent expression in the ovaries and minimal expression in the testis according to real-time quantitative PCR (RT-qPCR) study. As nodal was specifically expressed in the ovary, it could serve as an ovary-specific marker in sea cucumber. Additionally, knockdown of foxl2 or nodal using RNA interference (RNAi) led to the down-regulation of piwi, germ cell-less, and dmrt1, suggesting that foxl2 and nodal may play important roles in gonad maintenance of sea cucumber. Overall, this study adds to our understanding of the roles of foxl2 and nodal in the gonadal development of A. japonicus, which provides further insight into the mechanisms of sea cucumber sex determination and differentiation.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
10
|
Han YL, Sun ZH, Chang S, Wen B, Song J, Zuo RT, Chang YQ. Application of SNP in Genetic Sex Identification and Effect of Estradiol on Gene Expression of Sex-Related Genes in Strongylocentrotus intermedius. Front Endocrinol (Lausanne) 2021; 12:756530. [PMID: 34858332 PMCID: PMC8632358 DOI: 10.3389/fendo.2021.756530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Sea urchin (Strongylocentrotus intermedius) is an economically important mariculture species in Asia, and its gonads are the only edible part. The efficiency of genetic breeding in sea urchins is hampered due to the inability to distinguish gender by appearance. In this study, we first identified a sex-associated single nucleotide polymorphism (SNP) by combining type IIB endonuclease restriction site-associated DNA sequencing (2b-RAD-seq) and genome survey. Importantly, this SNP is located within spata4, a gene specifically expressed in male. Knocking down of spata4 by RNA interference (RNAi) in male individuals led to the downregulation of other conserved testis differentiation-related genes and germ cell marker genes. We also revealed that sex ratio in this validated culture population of S. intermedius is not 1:1. Moreover, after a 58-day feeding experiment with estradiol, the expression levels of several conserved genes that are related to testis differentiation, ovary differentiation, and estrogen metabolism were dynamically changed. Taken together, our results will contribute toward improving breeding efficiency, developing sex-controlled breeding, and providing a solid base for understanding sex determination mechanisms in sea urchins.
Collapse
Affiliation(s)
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | | | | | | | | | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|