1
|
Meng Y, Hu X, Jiang N, Fan Y, Li Y, Xue M, Xu C, Liu W, Zhou Y. Viperin and Its Effect on SVCV Replication in Common Carp, Cyprinus carpio. Animals (Basel) 2025; 15:96. [PMID: 39795039 PMCID: PMC11718829 DOI: 10.3390/ani15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Viperin is an interferon-stimulated gene (ISG) that plays an important role in the congenital antiviral immunity of vertebrates. In this study, the common carp viperin (cc-viperin) gene is characterized, and we determine whether it has the ability to inhibit spring viremia of carp virus (SVCV) replication in EPC cells. The results showed that the full-length cDNA of the cc-viperin gene was 1044 bp and it encoded 348 amino acids. The cc-viperin sequence contained a leucine zipper in the N-terminal, a CxxxCxxC motif in the SAM domain, and a conservative C-terminus. The cc-viperin gene's nucleotide and amino acid sequence alignment revealed that cc-viperin displayed relatively high sequence identity compared with other species. Phylogenetic analysis displayed the close relation of cc-viperin with Carassius auratus and Mylopharyngodon piceus. Subcellular localization analysis indicated that the cc-viperin protein was located in the cytoplasm. The gene expression results showed that cc-viperin was expressed in all of the tissues tested. Its expression level significantly increased in EPC cells after 24 h to 72 h compared to the control during SVCV infection. Moreover, cc-viperin significantly inhibited SVCV replication when it was overexpressed, whereas it increased SVCV replication when it had reduced expression in EPC cells, respectively. To summarize, the results obtained in this work show that cc-viperin shares similar sequence characteristics with other vertebrates, and it could inhibit SVCV replication in EPC cells, displaying an antiviral effect in common carp.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.M.); (X.H.); (N.J.); (Y.F.); (Y.L.); (M.X.); (C.X.); (W.L.)
| |
Collapse
|
2
|
Wang XW, Zhang R, Liu LL, Li HJ, Zhu H. Expression analysis and antiviral activity of koi carp (Cyprinus carpio) viperin against carp edema virus (CEV). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109519. [PMID: 38508540 DOI: 10.1016/j.fsi.2024.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Li-Li Liu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hui-Juan Li
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China.
| |
Collapse
|
3
|
Lu X, Yi M, Hu Z, Yang T, Zhang W, Marsh ENG, Jia K. Feedback loop regulation between viperin and viral hemorrhagic septicemia virus through competing protein degradation pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574905. [PMID: 38260481 PMCID: PMC10802422 DOI: 10.1101/2024.01.09.574905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Viperin is an antiviral protein that exhibits a remarkably broad spectrum of antiviral activity. Viperin-like proteins are found all kingdoms of life, suggesting it is an ancient component of the innate immune system. However, viruses have developed strategies to counteract viperin's effects. Here, we describe a feedback loop between viperin and viral hemorrhagic septicemia virus (VHSV), a common fish pathogen. We show that Lateolabrax japonicus viperin (Ljviperin) is induced by both IFN-independent and IFN-dependent pathways, with the C-terminal domain of Ljviperin being important for its anti-VHSV activity. Ljviperin exerts an antiviral effect by binding both the nucleoprotein (N) and phosphoprotein (P) of VHSV and induces their degradation through the autophagy pathway, which is an evolutionarily conserved antiviral mechanism. However, counteracting viperin's activity, N protein targets and degrades transcription factors that up-regulate Ljviperin expression, interferon regulatory factor (IRF) 1 and IRF9, through ubiquitin-proteasome pathway. Together, our results reveal a previously unknown feedback loop between viperin and virus, providing potential therapeutic targets for VHSV prevention. Importance Viral hemorrhagic septicaemia (VHS) is a contagious disease caused by the viral hemorrhagic septicaemia virus (VHSV), which poses a threat to over 80 species of marine and freshwater fish. Currently, there are no effective treatments available for this disease. Understanding the mechanisms of VHSV-host interaction is crucial for preventing viral infections. Here, we found that, as an ancient antiviral protein, viperin degrades the N and P proteins of VHSV through the autophagy pathway. Additionally, the N protein also impacts the biological functions of IRF1 and IRF9 through the ubiquitin-proteasome pathway, leading to the suppression of viperin expression. Therefore, the N protein may serve as a potential virulence factor for the development of VHSV vaccines and screening of antiviral drugs. Our research will serve as a valuable reference for the development of strategies to prevent VHSV infections.
Collapse
Affiliation(s)
- Xiaobing Lu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Meisheng Yi
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Zhe Hu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Taoran Yang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Wanwan Zhang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - E. Neil G. Marsh
- Departments of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kuntong Jia
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| |
Collapse
|
4
|
Groves L, Whyte SK, Purcell SL, Michaud D, Cai WC, Garber AF, Fast MD. Temperature impacts Atlantic salmon's ( Salmo salar) immunological response to infectious salmon anemia virus (ISAv). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100099. [PMID: 37293549 PMCID: PMC10245120 DOI: 10.1016/j.fsirep.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
Ocean temperatures continue to rise annually due to the ever-growing consequences of global climate change. These temperature changes can have an impact on the immunological robustness of cultured fish, especially cold-water species such as Atlantic salmon. The salmon farming industry already loses hundreds of millions of dollars each year to infectious and non-infectious diseases. One particularly important and WOAH reportable disease is infectious salmon anemia caused by the orthomyxovirus ISAv. Considering the changing environment, it is necessary to find ways to mitigate the effect of diseases on the industry. For this study, 20 Atlantic salmon families were housed in each of 38 different tanks at the AVC, with half of the fish being kept at 10 °C and half being kept at 20 °C. Donor Atlantic salmon IP- injected with a highly virulent ISAv isolate (HPR4; TCID50 of 1 × 105/mL) were added to each tank as the source of co-habitation infection. Both temperatures were sampled at onset of mortality in co-habited fish and at resolution of mortality. Family background and temperature significantly impacted ISAv load, as assessed by qPCR, time to mortality and overall mortality. Mortality was more acute at 20 °C, but overall mortality was higher at 10 °C. Based on percent mortality calculated over the course of the study, different families demonstrated different levels of survival. The three families that demonstrated the highest percent mortality, and the three families with the lowest percent mortality were then assessed for their antiviral responses using relative gene expression. Genes significantly upregulated between the unexposed fish and ISAv exposed fish included mx1, il4/13a, il12rb2, and trim25, and these were further impacted by temperature. Understanding how ISAv resistance is impacted by temperature can help identify seasonal risks of ISAv outbreaks as well as ideal responses to be targeted through immunopotentiation.
Collapse
Affiliation(s)
- L Groves
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - SK Whyte
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - SL Purcell
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - D Michaud
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - WC Cai
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - AF Garber
- Huntsman Marine Science Centre, St. Andrews, NB, Canada
| | - MD Fast
- Hoplite Lab, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
5
|
Huang L, Zhu X, Kuang J, Li B, Yu Q, Liu M, Li B, Guo H, Li P. Molecular and functional characterization of viperin in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109098. [PMID: 37758099 DOI: 10.1016/j.fsi.2023.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The radical S-adenosyl methionine domain-containing protein 2 (RSAD2), also known as viperin, plays a momentous and multifaceted role in antiviral immunity. However, the function of viperin is uninvestigated in golden pompano, Trachinotus ovatus. In the present study, a viperin homolog, named To-viperin, was cloned and characterized from golden pompano, and its role in response to grouper iridovirus (SGIV) and nervous necrosis virus (NNV) infection was investigated. The whole open reading frame (ORF) of To-viperin was composed of 1050 bp and encoded a polypeptide of 349 amino acids with 70.66%-83.51% identity with the known viperin homologs from other fish species. A variable N-terminal domain, a highly conserved C-terminal domain, and a conserved middle radical SAM domain (aa 61-271) with the three-cysteine motif CxxCxxC was found in To-viperin sequence. Expression analysis showed that To-viperin was constitutively expressed in all tested organs and was located mainly in the ER of golden pompano cells. Treatments with SGIV, poly I: C, or NNV could induce the up-regulation of viperin to varying degrees. The ectopic expression of To-viperin in vitro significantly reduced the viral titer of SGIV and NNV. Furthermore, To-viperin overexpression enhanced the expression of IFNc, IRF3, and ISG15 genes as well as, to a lesser extent, the IL-6 gene. In summary, our results suggested that the function of viperin is likely to be conserved in fish specise, as observed in other vertebrates, shedding light on the evolutionary conservation of viperin.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Xiaowen Zhu
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Jihui Kuang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Bohuan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Bingzheng Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China
| | - Hui Guo
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China.
| |
Collapse
|
6
|
Raji Sathyan K, Premraj A, Thavarool Puthiyedathu S. Antiviral radical SAM enzyme viperin homologue from Asian seabass (Lates calcarifer): Molecular characterisation and expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104499. [PMID: 35931216 DOI: 10.1016/j.dci.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The host response to virus infection is mediated by the interferon system and its workhorse effector proteins like Interferon-stimulated genes (ISGs). Viperin is an interferon-inducible antiviral protein. In the present study, an antiviral radical SAM enzyme, viperin homologue, was cloned and characterised from teleost, Asian seabass (Lates calcarifer). This cloned viperin cDNA encodes 351 amino acid protein with predicted N-terminal amphipathic alpha-helix, conserved radical S-adenosyl l-methionine (SAM) domain with CxxxCxxC motif and a highly conserved C-terminal domain. Lcviperin gene consists of six exons and five introns. The secondary structure contains nine alpha helices and beta sheets. Viperin from Lates is evolutionarily conserved and shares about 89% identity with Seriola dumerili and 70% identity with human orthologue. Poly(I:C) and RGNNV upregulated Lcviperin during in-vivo challenge studies, providing insight into its antiviral properties. Lates antiviral effector genes like viperin could help in elucidating the host-virus protein interactions and allow the development of improved antiviral strategies against pathogens like betanodavirus that devastate aquaculture of the species.
Collapse
Affiliation(s)
- Krishnapriya Raji Sathyan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - Avinash Premraj
- Camel Biotechnology Centre, Presidential Camels and Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Sajeevan Thavarool Puthiyedathu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India.
| |
Collapse
|