1
|
Matias AC, Viegas AR, Couto A, Lourenço-Marques C, Aragão C, Castanho S, Gamboa M, Candeias-Mendes A, Soares F, Modesto T, Pousão-Ferreira P, Ribeiro L. Effect of dietary l-glutamine supplementation on the intestinal physiology and growth during Solea senegalensis larval development. Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110961. [PMID: 38387740 DOI: 10.1016/j.cbpb.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The maturation of the intestinal digestive and absorptive functions might limit the amount of absorbed nutrients to fulfil the high requirements of the fast-growing marine fish larva. Glutamine (Gln) has been described to improve intestinal epithelium functions, due to its involvement in energy metabolism and protein synthesis. The purpose of this study was to evaluate dietary 0.2% Gln supplementation on aspects of intestinal physiology, protein metabolism and growth-related genes expression in Senegalese sole larvae. Experiment was carried out between 12 and 33 days post hatching (DPH) and fish were divided into two experimental groups, one fed Artemia spp. (CTRL) and the other fed Artemia spp. supplemented with Gln (GLN). GLN diet had two times more Gln than the CTRL diet. Samples were collected at 15, 19, 26 and 33 DPH for biometry, histology, and digestive enzymes activity, and at 33 DPH for gene expression, protein metabolism and AA content determination. Growth was significantly higher for Senegalese sole fed GLN diet, supported by differences on protein metabolism and growth-related gene expression. Slight differences were observed between treatments regarding the intestinal physiology. Overall, GLN diet seems to be directed to enhance protein metabolism leading to higher larval growth.
Collapse
Affiliation(s)
- Ana Catarina Matias
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal.
| | - Ana Rita Viegas
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Ana Couto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Cátia Lourenço-Marques
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Cláudia Aragão
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sara Castanho
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Margarida Gamboa
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Ana Candeias-Mendes
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Teresa Modesto
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Laura Ribeiro
- IPMA - Portuguese Institute for the Sea and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| |
Collapse
|
2
|
Samaddar A, Kaviraj A, Nielsen I, Saha S. Recycling of animal protein wastes in the formulation of feed for Labeo rohita and Mystus vittatus-a comparative evaluation. Trop Anim Health Prod 2024; 56:93. [PMID: 38430451 PMCID: PMC10908637 DOI: 10.1007/s11250-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Lactic acid bacteria (LAB) are key players in the fermentation of organic wastes and their recycling as feedstuff for fish. Whey, a common dairy byproduct in India, is a cheap source of LAB and can be used to ferment animal byproducts. An experimental study was designed to explore whether the whey fermented animal protein blend (WFAPB) could be used as a fishmeal replacer in the formulation of feed for both stomach-less carp fish Labeo rohita and stomach-bearing catfish Mystus vittatus. Experiments were performed with five isoproteinous, isolipidous, and isoenergetic feeds with WFAPB replacing fishmeal (FM) by 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5). Fifteen days of laboratory experiments with these experimental feeds revealed that more than 50% FM replacement level could result in excess postprandial absorption (6 h) of some essential and non-essential amino acids in the plasma of both fish. The postprandial absorption was more in M. vittatus than L. rohita. Ninety-day experiments were conducted in outdoor cement vats to measure growths and deposition of amino acids (AA) in muscle. Regression analysis was performed to find the optimal FM replacement based on four growth parameters and fifteen AA deposition in muscle. A two-phase fuzzy methodology was used to obtain Pareto-optimal replacement levels for each fish. The results demonstrated that FM replacement levels were 7.63% and 36.79% respectively for L. rohita and M. vittatus when only four growth parameters were considered. However, based on the FM replacement level that maximized deposition of 15 amino acids and growth parameters, it was found that 12.23% and 40.02% replacement of FM by the WFAPB was ideal respectively for L. rohita and M. vittatus. The results revealed that only a fraction of both essential and non-essential amino acids absorbed in plasma could be converted into protein and deposited as bound amino acids in the muscle. It is concluded that fermentation by whey is an inexpensive, easily available, and environmentally sustainable technique to recycle animal protein in the formulation of feed for fish, and the stomach-bearing carnivorous fish are more efficient in utilizing fermented animal protein blend than the stomach-less carps.
Collapse
Affiliation(s)
- Ayan Samaddar
- WorldFish - India, Directorate of Fisheries, Cuttack, 753001, Odisha, India
| | - Anilava Kaviraj
- Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Izabela Nielsen
- Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark
| | - Subrata Saha
- Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark.
- Department of Mathematics, University of Engineering & Management, Kolkata, 700160, India.
| |
Collapse
|
3
|
Zhang P, Zhang C, Yao X, Xie Y, Zhang H, Shao X, Yang X, Nie Q, Ye J, Wu C, Mi H. Selenium yeast improve growth, serum biochemical indices, metabolic ability, antioxidant capacity and immunity in black carp Mylopharyngodnpiceus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109414. [PMID: 38296006 DOI: 10.1016/j.fsi.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1β, and IFN-γ and elevate TGF-1β levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.
Collapse
Affiliation(s)
- Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chen Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xia Yang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Qin Nie
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, 168 Chengdong Avenue, Yichang, 443000, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China.
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co, Ltd, 588 Tianfu Avenue, Chengdu, 610093, China.
| |
Collapse
|
4
|
Albanesi CP, Méndez E, Michiels MS, Radonic M, López A, López-Mañanes AA. Differential modulation of digestive enzymes and energy reserves at different times after feeding in juveniles of the marine estuarine-dependent flatfish Paralichthys orbignyanus (Valenciennes, 1839). JOURNAL OF FISH BIOLOGY 2024; 104:34-43. [PMID: 37697670 DOI: 10.1111/jfb.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.
Collapse
Affiliation(s)
- Camila Paula Albanesi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - Eugenia Méndez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - María Soledad Michiels
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| | - Mariela Radonic
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N1, Mar del Plata, Argentina
| | - Andrea López
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N1, Mar del Plata, Argentina
| | - Alejandra A López-Mañanes
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, Mar Del Plata, Argentina
| |
Collapse
|
5
|
Saavedra M, Barata M, Matias AC, Couto A, Salem A, Ribeiro L, Pereira TG, Gamboa M, Lourenço-Marques C, Soares F, Dias J, Pousão-Ferreira P. Effect of Dietary Incorporation of Yellow Mealworm as a Partial Fishmeal Replacer on Growth, Metabolism, and Intestinal Histomorphology in Juvenile Meagre ( Argyrosomus regius). AQUACULTURE NUTRITION 2023; 2023:6572421. [PMID: 37398630 PMCID: PMC10314813 DOI: 10.1155/2023/6572421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
Efforts have been made to find alternatives to fish meal (FM), as the sustainability of aquaculture depends on it. Insect meal (IM) is a potential candidate to partially replace FM, being more sustainable and economically viable. In this experimental trial, three diets were tested with different yellow mealworm incorporation: a control diet with no IM, a diet with an inclusion of 10% IM (Ins10), and a diet with an incorporation of 20% IM (Ins20). The diets were tested on 10.5 g meagre for 47 days. The results showed that an IM inclusion higher than 10% affected both growth (2.6 vs. 2.2) and FCR (1.5 vs. 1.9) of meagre juveniles. However, this reduction in growth did not result from lower protein retention or changes in muscle fibre area or density. Little differences were observed in the activity of pancreatic and intestinal enzymes except for aminopeptidase total activity which was higher in the control and Ins10 compared to Ins20 (3847 vs. 3540 mU/mg protein), suggesting no limitations in protein synthesis. Also, the alkaline phosphatase intestinal maturation index was higher in the control group compared to the IM groups (437 vs. 296). On the contrary, several differences were also found in the proteolytic activity in the hepatic and muscle tissues of meagre juveniles fed the Ins10 diet. The inclusion of IM had no impact on intestine histomorphology but changes were detected in the enterocytes of fish from control and Ins10 which showed hypervacuolization and nucleus misplacement compared to the Ins20 treatment. Nevertheless, a higher percentage of Vibrionaceae was recorded for meagre fed on the Ins20 diet. Since no signs of inflammation were observed in the distal intestine, this suggests IM incorporation could have had an important impact on intestinal health due to its antimicrobial properties. This is supported by an increase in the haematocrit in the treatments where IM was added (20 to 25%). In conclusion, incorporations of IM at percentages up to 10% do not seem to have a negative impact on meagre performance at this age but can enhance the fish immune system and protection against intestinal inflammation.
Collapse
Affiliation(s)
- Margarida Saavedra
- Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P (IPMA), Rua Alfredo Magalhães Ramalho, N°6, 1495-006 Lisboa, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, NOVA School of Science and Technology, NOVA University of Lisbon, Portugal
| | - Marisa Barata
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Ana Catarina Matias
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Couto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Ciências, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ahmed Salem
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- National Institute of Oceanography and Fisheries (NIOF), Egypt
| | - Laura Ribeiro
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Teresa Gama Pereira
- Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P (IPMA), Rua Alfredo Magalhães Ramalho, N°6, 1495-006 Lisboa, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Margarida Gamboa
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
| | - Cátia Lourenço-Marques
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Jorge Dias
- Sparos Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Aquaculture Research Station of IPMA, Parque natural da Ria Formosa, s/n, 8700-194 Olhão, Portugal
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| |
Collapse
|