1
|
Lavrichenko DS, Chelebieva ES, Kladchenko ES. The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111057. [PMID: 39662678 DOI: 10.1016/j.cbpb.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.
Collapse
Affiliation(s)
- Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow 119991, Russia
| |
Collapse
|
2
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Andreyeva AY, Kukhareva TA, Gostyukhina OL, Vialova OY, Tkachuk AA, Chelebieva ES, Podolskaya MS, Borovkov AB, Bogacheva EA, Lavrichenko DS, Kladchenko ES. Impacts of ocean acidification and hypoxia on cellular immunity, oxygen consumption and antioxidant status in Mediterranean mussel. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109932. [PMID: 39343062 DOI: 10.1016/j.fsi.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.
Collapse
Affiliation(s)
- Alexandra Y Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Tatyana A Kukhareva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Olga L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Oksana Y Vialova
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Anastasia A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Andrey B Borovkov
- Department of Biotechnology and Phytoresources, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Elizaveta A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Daria S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Chelebieva ES, Kladchenko ES, Podolskaya MS, Bogacheva EA, Mosunov AA, Andreyeva AY. Toxic effect of mussel Mytilus galloprovincialis exposed to Ag-TiO 2 and ZnTi 2O 4-TiO 2 bicomponent nanoparticles. CHEMOSPHERE 2024; 363:142884. [PMID: 39019185 DOI: 10.1016/j.chemosphere.2024.142884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Nanoparticles (NPs) are widely used in various fields, including antifouling paints for ships and industrial structures submerged in water. The potential impact of NPs on aquatic organisms, particularly their potential toxicity, is a significant concern, as their negative impact has been relatively poorly studied. In this study, we evaluated the effect of different concentrations of bimetallic Ag-TiO₂ and ZnTi₂O₄-TiO₂ NPs, which could potentially be used in antifouling coatings, on the hemocytes of the Mediterranean mussel Mytilus galloprovincialis. Hemocytes were exposed to NPs at concentrations of 0.1-1 mg/L for 1 and 2 h, and the production of reactive oxygen species (ROS), levels of DNA damage, and number of dead cells were measured. Exposure to Ag-TiO₂ NPs at 1 mg/L concentration for 1 h suppressed ROS production in hemocytes and reduced the relative number of agranulocytes in cell suspensions, without inducing DNA damage or cell death. Exposure to ZnTi2O4-TiO2 NPs did not cause changes in the ratio of granulocytes to agranulocytes in suspensions, nor did it affect other functional parameters of hemocytes. However, after a 2 h exposure period, ZnTi2O4-TiO2 NPs (1 mg/L) significantly reduced the production of ROS by hemocytes. These findings suggest that Ag-TiO2 and ZnTi2O4-TiO2 NPs have low acute toxicity for marine bivalves.
Collapse
Affiliation(s)
- Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia.
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Elizaveta A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| | - Andrey A Mosunov
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - Aleksandra Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 14, Moscow, 119991, Russia
| |
Collapse
|
5
|
Kladchenko ES, Chelebieva ES, Podolskaya MS, Khurchak AI, Andreyeva AY, Malakhova TV. Shift in hemocyte immune parameters of marine bivalve Mytilus galloprovincialis (Lamarck, 1819) after exposure to methane. MARINE POLLUTION BULLETIN 2024; 201:116174. [PMID: 38382322 DOI: 10.1016/j.marpolbul.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Methane are widely used in industry as an emerge source may be released significantly higher aquatic ecosystems due to gas seepages. In this study, short-term (90 min) methane effects on bivalve hemocytes were investigated using flow cytometry. Hemocyte parameters including hemolymph cellular composition, phagocytosis activity, mitochondrial membrane potential and reactive oxygen species (ROS) content were evaluated in the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to hypoxia (control group), pure methane and industrial methane (industrial hydrocarbon mixture). Comparison of biomarkers showed that the mussel was more sensitive to methane than to low oxygen concentration, supporting the effects of methane on the mussel's immune system. After exposure to pure and industrial methane, the number of granulocytes decreased dramatically and the levels of reactive oxygen species, mitochondrial membrane potential and phagocytosis capacity increased significantly. It was shown that the methane type-dependent effect was pronounced, with industrial methane leading to more pronounced changes.
Collapse
Affiliation(s)
- Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Alena I Khurchak
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Aleksandra Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Tatiana V Malakhova
- Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| |
Collapse
|