1
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|
2
|
Wang Z, Leary DH, Liu J, Settlage RE, Fears KP, North SH, Mostaghim A, Essock-Burns T, Haynes SE, Wahl KJ, Spillmann CM. Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite. BMC Genomics 2015; 16:859. [PMID: 26496984 PMCID: PMC4619306 DOI: 10.1186/s12864-015-2076-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. METHODS The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. RESULTS We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. CONCLUSIONS The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Jinny Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Robert E Settlage
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| | - Kenan P Fears
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Stella H North
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Anahita Mostaghim
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA, 23507, USA.
| | - Tara Essock-Burns
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Duke University Marine Laboratory, 135 Duke Marine Lab Rd. Beaufort, North Carolina, 28516, USA.
| | - Sarah E Haynes
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
- Present address: Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC, 20375, USA.
| | - Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, 20375, USA.
| |
Collapse
|
3
|
Roer R, Abehsera S, Sagi A. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics. Integr Comp Biol 2015; 55:771-91. [DOI: 10.1093/icb/icv080] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
Structural and Functional Analyses of a Strong Chitin-Binding Protein-1 (SCBP-1) from the Exoskeleton of the Crayfish Procambarus clarkii. Biosci Biotechnol Biochem 2013; 77:361-8. [DOI: 10.1271/bbb.120787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Luquet G. Biomineralizations: insights and prospects from crustaceans. Zookeys 2012:103-21. [PMID: 22536102 PMCID: PMC3335408 DOI: 10.3897/zookeys.176.2318] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/19/2011] [Indexed: 11/12/2022] Open
Abstract
For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area.
Collapse
Affiliation(s)
- Gilles Luquet
- Biogéosciences, UMR 5561 CNRS - Université de Bourgogne, Dijon, France
| |
Collapse
|
6
|
Suzuki M, Iwashima A, Tsutsui N, Ohira T, Kogure T, Nagasawa H. Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer. Chembiochem 2011; 12:2478-87. [PMID: 21932217 DOI: 10.1002/cbic.201100317] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 11/08/2022]
Abstract
The nacreous layer of molluscan shells consists of a highly organised, layered structure comprising calcium carbonate aragonite crystals, each surrounded by an organic matrix. In the Japanese pearl oyster Pinctada fucata, the Pif protein from the nacreous layer functions in aragonite binding, and plays a key role in nacre formation. Here, we investigated whether the blue mussel Mytilus galloprovincialis also has a protein with similar functions in the nacreous layer. By using a calcium carbonate-binding assay, we identified the novel protein blue mussel shell protein (BMSP) 100 that can bind calcium carbonate crystals of both aragonite and calcite. When the entire sequence of a cDNA encoding BMSP 100 was determined, it was found that BMSP is a preproprotein consisting of a signal peptide and two proteins, BMSP 120 and BMSP 100. BMSP 120 contains four von Willebrand factor A (VWA) domains and one chitin-binding domain, thus suggesting that it has a role in maintaining structure within the matrix. Immunohistochemical analysis revealed that BMSP 100 is present throughout the nacreous layer with dense localisation in the myostracum. Posttranslational modification analysis indicated that BMSP 100 is phosphorylated and glycosylated. These results suggest that there is a common molecular mechanism between P. fucata and M. galloprovincialis that underlies the nacreous layer formation.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 2011; 6:e21860. [PMID: 21747964 PMCID: PMC3128620 DOI: 10.1371/journal.pone.0021860] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022] Open
Abstract
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the ‘aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the ‘aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.
Collapse
Affiliation(s)
- Dong Fang
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
| | - Guangrui Xu
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
| | - Yilin Hu
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
| | - Cong Pan
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
- Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
- * E-mail: (LX); (RZ)
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Science, Tsinghua University, Beijing, China
- Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
- * E-mail: (LX); (RZ)
| |
Collapse
|
8
|
Structure and Function of Matrix Proteins and Peptides in the Biomineral Formation in Crustaceans. MOLECULAR BIOMINERALIZATION 2011; 52:315-29. [DOI: 10.1007/978-3-642-21230-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Seear PJ, Tarling GA, Burns G, Goodall-Copestake WP, Gaten E, Ozkaya O, Rosato E. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics 2010; 11:582. [PMID: 20958982 PMCID: PMC3091729 DOI: 10.1186/1471-2164-11-582] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/19/2010] [Indexed: 12/01/2022] Open
Abstract
Background All crustaceans periodically moult to renew their exoskeleton. In krill this involves partial digestion and resorption of the old exoskeleton and synthesis of new cuticle. Molecular events that underlie the moult cycle are poorly understood in calcifying crustaceans and even less so in non-calcifying organisms such as krill. To address this we constructed an Antarctic krill cDNA microarray in order to generate gene expression profiles across the moult cycle and identify possible activation pathways. Results A total of 26 different cuticle genes were identified that showed differential gene expression across the moult cycle. Almost all cuticle genes were up regulated during premoult and down regulated during late intermoult. There were a number of transcripts with significant sequence homology to genes potentially involved in the synthesis, breakdown and resorption of chitin. During early premoult glutamine synthetase, a gene involved in generating an amino acid used in the synthesis of glucosamine, a constituent of chitin, was up regulated more than twofold. Mannosyltransferase 1, a member of the glycosyltransferase family of enzymes that includes chitin synthase was also up regulated during early premoult. Transcripts homologous to a β-N-acetylglucosaminidase (β-NAGase) precursor were expressed at a higher level during late intermoult (prior to apolysis) than during premoult. This observation coincided with the up regulation during late intermoult, of a coatomer subunit epsilon involved in the production of vesicles that maybe used to transport the β-NAGase precursors into the exuvial cleft. Trypsin, known to activate the β-NAGase precursor, was up regulated more than fourfold during premoult. The up regulation of a predicted oligopeptide transporter during premoult may allow the transport of chitin breakdown products across the newly synthesised epi- and exocuticle layers. Conclusion We have identified many genes differentially expressed across the moult cycle of krill that correspond with known phenotypic structural changes. This study has provided a better understanding of the processes involved in krill moulting and how they may be controlled at the gene expression level.
Collapse
Affiliation(s)
- Paul J Seear
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Appl Environ Microbiol 2010; 76:7322-7. [PMID: 20851984 DOI: 10.1128/aem.01767-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate.
Collapse
|
11
|
Glazer L, Shechter A, Tom M, Yudkovski Y, Weil S, Aflalo ED, Pamuru RR, Khalaila I, Bentov S, Berman A, Sagi A. A protein involved in the assembly of an extracellular calcium storage matrix. J Biol Chem 2010; 285:12831-9. [PMID: 20150428 DOI: 10.1074/jbc.m109.071068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate.
Collapse
Affiliation(s)
- Lilah Glazer
- Department of Life Sciences, Ben-Gurion University, P. O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuballa AV, Merritt DJ, Elizur A. Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus. BMC Biol 2007; 5:45. [PMID: 17925039 PMCID: PMC2222620 DOI: 10.1186/1741-7007-5-45] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 10/10/2007] [Indexed: 11/28/2022] Open
Abstract
Background Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence) associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992) previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path into the investigation of the gene networks associated with cuticle formation.
Collapse
Affiliation(s)
- Anna V Kuballa
- Department of Primary Industries and Fisheries (DPI&F), Animal Science, Bribie Island, Queensland 4507, Australia.
| | | | | |
Collapse
|
13
|
Inoue H, Ohira T, Nagasawa H. Significance of the N- and C-terminal regions of CAP-1, a cuticle calcification-associated peptide from the exoskeleton of the crayfish, for calcification. Peptides 2007; 28:566-73. [PMID: 17239990 DOI: 10.1016/j.peptides.2006.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 11/23/2022]
Abstract
Calcification-associated peptide (CAP)-1 is considered to play an important role in calcification of the exoskeleton of the crayfish, Procambarus clarkii. In this study, in order to clarify the molecular mechanism of calcification, we constructed expression systems of recombinant molecules of CAP-1 and its related peptides in Escherichia coli, and verified the structure-activity relationship of these peptides. The inhibitory assay on calcium carbonate precipitation and the calcium-binding assay showed that the C-terminal acidic region was most important for both activities. The CD spectra of these peptides varied depending on calcium concentration and showed that the N-terminal region is associated with the peptide conformation. These results indicate that the C-terminal part of CAP-1 may concentrate calcium ions for nucleation and/or interact with calcium carbonate precipitate to control the growth and that the N-terminal part contribute to maintaining the peptide conformation.
Collapse
Affiliation(s)
- Hirotaka Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
14
|
Faircloth LM, Shafer TH. Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:370-83. [PMID: 17188921 DOI: 10.1016/j.cbpb.2006.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/21/2022]
Abstract
Eight cuticle protein transcripts from Callinectes sapidus were sequenced and their expression determined across the molt cycle in both calcifying and arthrodial cuticle hypodermis using quantitative PCR, Northern blots, and in situ hybridization. Four transcripts, designated CsAMP, are found only in non-calcifying arthrodial membrane hypodermis. They all code for a Rebers-Riddiford-1 motif, known to bind chitin. CsAMP9.3 is most likely an exocuticle constituent since it is expressed only during pre-molt. The other three arthrodial transcripts are present both before and after ecdysis. One of these, CsAMP16.3, codes for a RGD cell-attachment motif that could be involved in anchoring chitin-protein fibers to pore canals, cellular extensions of the hypodermis in the cuticle. The other four transcripts, designated CsCP, were found only in calcifying hypodermis. CsCP14.1 contains an RR-1 motif, which is more commonly found in non-calcifying cuticle proteins. CsCP6.1 is expressed post-molt and contains a partial RR motif, suggesting that it could bind to chitin in the endocuticle. The other two transcripts from calcifying hypodermis do not code for RR proteins, but both contain three copies of a different insect cuticle motif. One of these, CsCP19.0, is expressed only post-molt while the other, CsCP15.0, is present both before and after ecdysis.
Collapse
Affiliation(s)
- Lindsay M Faircloth
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | | |
Collapse
|
15
|
Coblentz FE, Towle DW, Shafer TH. Expressed sequence tags from normalized cDNA libraries prepared from gill and hypodermal tissues of the blue crab, Callinectes sapidus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:200-8. [DOI: 10.1016/j.cbd.2005.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/29/2022]
|