1
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
2
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
3
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
5
|
Olivier E, Wakx A, Fouyet S, Dutot M, Rat P. JEG-3 placental cells in toxicology studies: a promising tool to reveal pregnancy disorders. Anat Cell Biol 2021; 54:83-92. [PMID: 33281121 PMCID: PMC8017447 DOI: 10.5115/acb.20.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
Placental alterations are responsible for adverse pregnancy outcomes like preeclampsia and intrauterine growth restriction. And yet, placenta toxicology has not become a fully-fledged toxicology field. Because placenta is very often seen only as a barrier between the mother and the fetus, there is a lack and therefore a need for an experimental human model with technical recommendations to study placenta toxicology. In vitro approaches are recommended in experimental toxicology as they focus on a specific biological process and yield high-throughput screening methods. In the present study, we first established incubation conditions to preserve signatures of the human JEG-3 cell line identity while enabling toxicity detection. JEG-3 cells prepared in our incubation conditions were renamed JEG-Tox cells. As placental alterations are mainly triggered by uncontrolled apoptosis, we second used known apoptotic agents pregnant women are exposed to, to check that JEG-Tox cells can trigger apoptosis. Ethanol, bisphenol F, quinalphos, 4,4'-DDT, benzalkonium chloride, phenoxyethanol, propylparaben, and perfluorooctanic acid all induced chromatin condensation in JEG-Tox cells. Our incubation conditions allow JEG-Tox cells to keep placental cell identity and to respond to toxic chemicals. JEG-Tox cells are a pertinent model for placenta toxicology and could be used to better understand pregnancy alterations.
Collapse
Affiliation(s)
- Elodie Olivier
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Anaïs Wakx
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Sophie Fouyet
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| | - Mélody Dutot
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France.,Recherche & Développement, YSLAB, Quimper, France
| | - Patrice Rat
- UMR CNRS 8038 CiTCoM, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
6
|
Hangas A, Aasumets K, Kekäläinen NJ, Paloheinä M, Pohjoismäki JL, Gerhold JM, Goffart S. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Nucleic Acids Res 2018; 46:9625-9636. [PMID: 30169847 PMCID: PMC6182158 DOI: 10.1093/nar/gky793] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Maintenance of topological homeostasis is vital for gene expression and genome replication in all organisms. Similar to other circular genomes, also mitochondrial DNA (mtDNA) is known to exist in various different topological forms, although their functional significance remains unknown. We report here that both known type II topoisomerases Top2α and Top2β are present in mammalian mitochondria, with especially Top2β regulating the supercoiling state of mtDNA. Loss of Top2β or its inhibition by ciprofloxacin results in accumulation of positively supercoiled mtDNA, followed by cessation of mitochondrial transcription and replication initiation, causing depletion of mtDNA copy number. These mitochondrial effects block both cell proliferation and differentiation, possibly explaining some of the side effects associated with fluoroquinolone antibiotics. Our results show for the first time the importance of topology for maintenance of mtDNA homeostasis and provide novel insight into the mitochondrial effects of fluoroquinolones.
Collapse
Affiliation(s)
- Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Koit Aasumets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Nina J Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Mika Paloheinä
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Jaakko L Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Joachim M Gerhold
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
7
|
LeMaire SA, Zhang L, Luo W, Ren P, Azares AR, Wang Y, Zhang C, Coselli JS, Shen YH. Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice. JAMA Surg 2018; 153:e181804. [PMID: 30046809 PMCID: PMC6233654 DOI: 10.1001/jamasurg.2018.1804] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/22/2018] [Indexed: 12/12/2022]
Abstract
Importance Fluoroquinolones are among the most commonly prescribed antibiotics. Recent clinical studies indicated an association between fluoroquinolone use and increased risk of aortic aneurysm and dissection (AAD). This alarming association has raised concern, especially in patients with AAD with risk of rupture and in individuals at risk for developing AAD. Objective To examine the effect of ciprofloxacin on AAD development in mice. Design, Setting, and Participants In a mouse model of moderate, sporadic AAD, 4-week-old male and female C57BL/6J mice were challenged with a high-fat diet and low-dose angiotensin infusion (1000 ng/min/kg). Control unchallenged mice were fed a normal diet and infused with saline. After randomization, challenged and unchallenged mice received ciprofloxacin (100 mg/kg/d) or vehicle through daily gavage during angiotensin or saline infusion. Aortic aneurysm and dissection development and aortic destruction were compared between mice. The direct effects of ciprofloxacin on aortic smooth muscle cells were examined in cultured cells. Results No notable aortic destruction was observed in unchallenged mice that received ciprofloxacin alone. Aortic challenge induced moderate aortic destruction with development of AAD in 17 of 38 mice (45%) and severe AAD in 9 (24%) but no rupture or death. However, challenged mice that received ciprofloxacin had severe aortic destruction and a significantly increased incidence of AAD (38 of 48 [79%]; P = .001; χ2 = 10.9), severe AAD (32 of 48 [67%]; P < .001; χ2 = 15.7), and rupture and premature death (7 of 48 [15%]; P = .01; χ2 = 6.0). The increased AAD incidence was observed in different aortic segments and was similar between male and female mice. Compared with aortic tissues from challenged control mice, those from challenged mice that received ciprofloxacin showed decreased expression of lysyl oxidase, an enzyme that is critical in the assembly and stabilization of elastic fibers and collagen. These aortas also showed increased matrix metalloproteinase levels and activity, elastic fiber fragmentation, and aortic cell injury. In cultured smooth muscle cells, ciprofloxacin treatment significantly reduced lysyl oxidase expression and activity, increased matrix metalloproteinase expression and activity, suppressed cell proliferation, and induced cell death. Furthermore, ciprofloxacin-a DNA topoisomerase inhibitor-caused nuclear and mitochondrial DNA damage and the release of DNA into the cytosol, subsequently inducing mitochondrial dysfunction, reactive oxygen species production, and activation of the cytosolic DNA sensor STING, which we further showed was involved in the suppression of lysyl oxidase expression and induction of matrix metalloproteinase expression. Conclusions and Relevance Ciprofloxacin increases susceptibility to aortic dissection and rupture in a mouse model of moderate, sporadic AAD. Ciprofloxacin should be used with caution in patients with aortic dilatation, as well as in those at high risk for AAD.
Collapse
Affiliation(s)
- Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | | | - Yidan Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Treatment of the Fluoroquinolone-Associated Disability: The Pathobiochemical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8023935. [PMID: 29147464 PMCID: PMC5632915 DOI: 10.1155/2017/8023935] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Abstract
Long-term fluoroquinolone-associated disability (FQAD) after fluoroquinolone (FQ) antibiotic therapy appears in recent years as a significant medical and social problem, because patients suffer for many years after prescribed antimicrobial FQ treatment from tiredness, concentration problems, neuropathies, tendinopathies, and other symptoms. The knowledge about the molecular activity of FQs in the cells remains unclear in many details. The effective treatment of this chronic state remains difficult and not effective. The current paper reviews the pathobiochemical properties of FQs, hints the directions for further research, and reviews the research concerning the proposed treatment of patients. Based on the analysis of literature, the main directions of possible effective treatment of FQAD are proposed: (a) reduction of the oxidative stress, (b) restoring reduced mitochondrion potential ΔΨm, (c) supplementation of uni- and bivalent cations that are chelated by FQs and probably ineffectively transported to the cell (caution must be paid to Fe and Cu because they may generate Fenton reaction), (d) stimulating the mitochondrial proliferation, (e) removing FQs permanently accumulated in the cells (if this phenomenon takes place), and (f) regulating the disturbed gene expression and enzyme activity.
Collapse
|
9
|
Golomb BA, Koslik HJ, Redd AJ. Fluoroquinolone-induced serious, persistent, multisymptom adverse effects. BMJ Case Rep 2015; 2015:bcr-2015-209821. [PMID: 26438672 DOI: 10.1136/bcr-2015-209821] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We present a case series of four previously healthy, employed adults without significant prior medical history in each of whom symptoms developed while on fluoroquinolones (FQs), with progression that continued following discontinuation evolving to a severe, disabling multisymptom profile variably involving tendinopathy, muscle weakness, peripheral neuropathy, autonomic dysfunction, sleep disorder, cognitive dysfunction and psychiatric disturbance. Physicians and patients should be alert to the potential for FQ-induced severe disabling multisymptom pathology that may persist and progress following FQ use. Known induction by FQs of delayed mitochondrial toxicity provides a compatible mechanism, with symptom profiles (and documented mechanisms of FQ toxicity) compatible with the hypothesis of an exposure-induced mitochondrial neurogastrointestinal encephalomyopathy.
Collapse
Affiliation(s)
| | - Hayley Jean Koslik
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alan J Redd
- Department of Anthropology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Spodniewska A, Barski D, Giżejewska A. Effect of enrofloxacin and chlorpyrifos on the levels of vitamins A and E in Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:587-591. [PMID: 26356388 DOI: 10.1016/j.etap.2015.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
This study investigates the effects of enrofloxacin and chlorpyrifos, and their combination on vitamin A and E concentrations in the liver of rats. Results of this study indicated a reduction in the contents of vitamins A and E in the liver, which persisted for the entire period of the experiment. Vitamins A and E concentrations were slightly decreased (2-7%) in enrofloxacin-treated rats. In the group of rats intoxicated with chlorpyrifos, a significant decrease in the level of vitamin A was observed up to the 24th hour, and for vitamin E up to the 3rd day from the discontinuation of intoxication with the compounds under study. In the enrofloxacin-chlorpyrifos co-exposure group reduced vitamins A and E level was also noted. The greatest fall in vitamin A level was observed after 3h, while the contents of vitamin E decreased progressively up to the 3rd day. Changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only.
Collapse
Affiliation(s)
- Anna Spodniewska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 14 Street, 10-719 Olsztyn, Poland.
| | - Dariusz Barski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 14 Street, 10-719 Olsztyn, Poland.
| | - Aleksandra Giżejewska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 14 Street, 10-719 Olsztyn, Poland.
| |
Collapse
|
11
|
Influence of Different Doses of Levofloxacin on Antioxidant Defense Systems and Markers of Renal and Hepatic Dysfunctions in Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/385023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Levofloxacin (LFX) is a broad spectrum fluoroquinolone antibiotic used in the treatment of infections such as pneumonia, chronic bronchitis, and sinusitis. The present study assessed the likely toxic effect of LFX on hepatic and renal tissues in rats. Twenty male Wistar rats were randomly divided into four treatment groups: A: control, B: 5 mg/kg bw LFX (half therapeutic dose), C: 10 mg/kg bw LFX (therapeutic dose), and D: 20 mg/kg bw LFX (double therapeutic dose). After seven days of administration, result indicated significant (P<0.05) increase in plasma ALT, AST, and ALP activities in the treated groups compared to control. Also, there was a significant increase in plasma creatinine, urea, and total bilirubin in the treated groups relative to control. Plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides also increased significantly in the treated groups relative to control. Also, hepatic MDA level increased significantly in all the treated groups. However, hepatic SOD, catalase, and GST activities were significantly reduced in the LFX-treated animals. Moreover, GSH and ascorbic acid levels were significantly decreased in the LFX-treated groups relative to control. In conclusion, three doses of levofloxacin depleted antioxidant defense system and induced oxidative stress and hepatic and renal dysfunctions in rats.
Collapse
|
12
|
Cytotoxic effect of lomefloxacin in culture of human epidermal melanocytes. Pharmacol Rep 2013; 65:689-99. [DOI: 10.1016/s1734-1140(13)71047-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/01/2013] [Indexed: 11/17/2022]
|
13
|
Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes. Toxicol Appl Pharmacol 2013; 267:74-87. [DOI: 10.1016/j.taap.2012.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023]
|
14
|
Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother 2012; 56:4046-51. [PMID: 22615289 DOI: 10.1128/aac.00678-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This minireview explores mitochondria as a site for antibiotic-host interactions that lead to pathophysiologic responses manifested as nonantibacterial side effects. Mitochondrion-based side effects are possibly related to the notion that these organelles are archaic bacterial ancestors or commandeered remnants that have co-evolved in eukaryotic cells; thus, this minireview focuses on mitochondrial damage that may be analogous to the antibacterial effects of the drugs. Special attention is devoted to aminoglycosides, chloramphenicol, and fluoroquinolones and their respective single side effects related to mitochondrial disturbances. Linezolid/oxazolidinone multisystemic toxicity is also discussed. Aminoglycosides and oxazolidinones are inhibitors of bacterial ribosomes, and some of their side effects appear to be based on direct inhibition of mitochondrial ribosomes. Chloramphenicol and fluoroquinolones target bacterial ribosomes and gyrases/topoisomerases, respectively, both of which are present in mitochondria. However, the side effects of chloramphenicol and the fluoroquinolones appear to be based on idiosyncratic damage to host mitochondria. Nonetheless, it appears that mitochondrion-associated side effects are a potential aspect of antibiotics whose targets are shared by prokaryotes and mitochondria-an important consideration for future drug design.
Collapse
|
15
|
Zhu J, Aja S, Kim EK, Park MJ, Ramamurthy S, Jia J, Hu X, Geng P, Ronnett GV. Physiological oxygen level is critical for modeling neuronal metabolism in vitro. J Neurosci Res 2011; 90:422-34. [PMID: 22002503 DOI: 10.1002/jnr.22765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/29/2011] [Accepted: 07/16/2011] [Indexed: 11/09/2022]
Abstract
In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O(2)) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate-activated protein kinase (AMPK) was more activated in 5% O(2) and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O(2). These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Q, Peng S, Sheng Z, Wang Y. Ofloxacin induces oxidative damage to joint chondrocytes of juvenile rabbits: Excessive production of reactive oxygen species, lipid peroxidation and DNA damage. Eur J Pharmacol 2010; 626:146-53. [DOI: 10.1016/j.ejphar.2009.09.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 09/15/2009] [Accepted: 09/28/2009] [Indexed: 11/30/2022]
|
17
|
Lowes DA, Wallace C, Murphy MP, Webster NR, Galley HF. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Free Radic Res 2009; 43:323-8. [PMID: 19235604 DOI: 10.1080/10715760902736275] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tendinitis and tendon rupture during treatment with fluoroquinolone antibiotics is thought to be mediated via oxidative stress. This study investigated whether ciprofloxacin and moxifloxacin cause oxidative stress and mitochondrial damage in cultured normal human Achilles' tendon cells and whether an antioxidant targeted to mitochondria (MitoQ) would protect against such damage better than a non-mitochondria targeted antioxidant. Human tendon cells from normal Achilles' tendons were exposed to 0-0.3 mM antibiotic for 24 h and 7 days in the presence of 1 microM MitoQ or an untargeted form, idebenone. Both moxifloxacin and ciprofloxacin resulted in up to a 3-fold increase in the rate of oxidation of dichlorodihydrofluorescein, a marker of general oxidative stress in tenocytes (p<0.0001) and loss of mitochondrial membrane permeability (p<0.001). In cells treated with MitoQ the oxidative stress was less and mitochondrial membrane potential was maintained. Mitochondrial damage to tenocytes during fluoroquinolone treatment may be involved in tendinitis and tendon rupture.
Collapse
Affiliation(s)
- Damon A Lowes
- Division of Applied Medicine, School of Medicine & Dentistry, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|