1
|
Rodriguez C, Simon V, Conget P, Vega IA. Both quiescent and proliferating cells circulate in the blood of the invasive apple snail Pomacea canaliculata. FISH & SHELLFISH IMMUNOLOGY 2020; 107:95-103. [PMID: 32966893 DOI: 10.1016/j.fsi.2020.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Gastropod hematopoiesis occurs at specialized tissues in some species, but the evidence also suggests that hemocyte generation is maybe widespread in the connective tissues or the blood system in others. In Ampullariidae (Caenogastropoda), both the kidney and the lung contain putative hematopoietic cells, which react to immune challenges. In the current study, we wanted to explore if hematopoiesis occurs in the blood of Pomacea canaliculata. Thus, we obtained circulating hemocytes from donor animals and tested their ability to proliferate in the blood of conspecific recipients. We tracked cell proliferation by labeling the donors' hemocytes with the fluorescent cell proliferation marker carboxyfluorescein diacetate succinimidyl ester (CFSE). Transferred CFSE-labeled hemocytes survived and proliferated into the recipients' circulation for at least 17 days. We also determined the cell cycle status of circulating hemocytes by using the propidium iodide (PI) and acridine orange (AO) staining methods. Flow cytometry analyses showed that most PI-stained hemocytes were in the G1 phase (~96%), while a lower proportion of cells were through the G2/S-M transition (~4%). When we instead used AO-staining, we further distinguished a subpopulation of cells (~5%) of low size, complexity-granularity, and RNA content. We regarded this subpopulation as quiescent cells. In separate experimental sets, we complemented these findings by assessing in circulating hemocytes two evolutionary conserved features of quiescent, undifferentiated cells. First, we used JC-1 staining to determine the mitochondrial membrane potential (Ψm) of circulating hemocytes, which is expected to be low in quiescent cells. Most hemocytes (~87%) showed high aggregation of JC-1, which indicates a high Ψm. Besides that, a small hemocyte subpopulation (~11%) showed low aggregation of the dye, thus indicating a low Ψm. It is known that the transition from a quiescent to a proliferating state associates with an increase of the Ψm. The specificity of these changes was here controlled by membrane depolarization with the Ψm disruptor CCCP. Second, we stained hemocytes with Hoechst33342 dye to determine the efflux activity of ABC transporters, which participate in the multixenobiotic resistance system characteristic of undifferentiated cells. Most hemocytes (>99%) showed a low dye-efflux activity, but a small proportion of cells (0.06-0.12%) showed a high dye-efflux activity, which was significantly inhibited by 100 and 500 μM verapamil, and thus is indicative of an undifferentiated subpopulation of circulating hemocytes. Taken together, our results suggest that, among circulating hemocytes, there are cells with the ability to proliferate or to stay in a quiescent state and behave as progenitor cells later, either in the circulation or the hematopoietic tissues/organs.
Collapse
Affiliation(s)
- Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina
| | - Valeska Simon
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, 7710162, Santiago, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, 7710162, Santiago, Chile.
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina.
| |
Collapse
|
2
|
Distribution of Defensive Metabolites in Nudibranch Molluscs. J Chem Ecol 2018; 44:384-396. [DOI: 10.1007/s10886-018-0941-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|
3
|
Burgos-Aceves MA, Faggio C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. FISH & SHELLFISH IMMUNOLOGY 2017; 67:513-517. [PMID: 28625873 DOI: 10.1016/j.fsi.2017.06.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically important species. It has been used in programs of monitoring of pollution, since it is sessile organism that is capable of accumulating pollutants in tissues through filter feeding. Due to an increase of pollutants in the environment, marine mussels present physiological alterations that compromise their innate immune system, which can latter lead to opportunistic diseases. The haemocytes are the cells in charge of the immune response in the Mediterranean mussel and in other mollusks. In this review, we summarize the physiological and genetic response capacity of these immune cells to the presence of xenobiotics, pathogens and the interplay. The identification of the basic mechanisms of immunity and their modulation in mussels can give important information for the possible utilization of this species as an invertebrate model for studies on innate immunity, future immunotoxicological studies, and predict changes in the community for the future.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23090, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
4
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
5
|
Lozano V, Martínez-Escauriaza R, Pérez-Parallé M, Pazos A, Sánchez J. Two novel multidrug resistance associated protein (MRP/ABCC) from the Mediterranean mussel (Mytilus galloprovincialis): characterization and expression patterns in detoxifying tissues. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multidrug resistance associated proteins (MRP) belong to the ABCC branch of the ABC transporters. The MRP together with P-gp (P-glycoprotein; MDR1; ABCB1) and BCRP (breast cancer resistance protein; ABCG2) confer multixenobiotic resistance (MXR) in marine vertebrates. In aquatic invertebrates, little is known about the presence and role of these ABC transporters. The ABC transporters play an important role in the absorption, distribution, and excretion of drugs, xenobiotics, and endogenous compounds and are predominantly expressed in excretory organs. In the present study, we identified and characterized two MRP/ABCC transporters (mrp1 and mrp2) from the Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819). The two cDNAs finally obtained were 4648 bp for mrp1 and 5065 bp for mrp2 with open reading frames of 1500 and 1524 residues, respectively. Analysis of the amino acid sequences revealed the structural organization of ABC transporters with the typical and highly conserved motifs. The expression levels of these genes revealed that the highest expression of mrp1 and mrp2 genes was found in the digestive gland followed by gills, and the lowest expression of the three tissues was detected in the mantle. The expression of these genes was also studied in mussels naturally contaminated with okadaic acid (from a bloom of Dinophysis acuminata Claparède and Lachmann, 1859). The overexpression of mrp2 in the digestive gland suggests that this gene is involved in the process of detoxification of okadaic acid in M. galloprovincilais. These expression patterns agree with the suggested role of these genes in the protection against endogenous or exogenous compounds in aquatic organisms.
Collapse
Affiliation(s)
- V. Lozano
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - R. Martínez-Escauriaza
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - M.L. Pérez-Parallé
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - A.J. Pazos
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - J.L. Sánchez
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| |
Collapse
|
6
|
A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions. J Chem Ecol 2013; 39:465-80. [PMID: 23483346 DOI: 10.1007/s10886-013-0267-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
Abstract
We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.
Collapse
|
7
|
Lauritano C, Procaccini G, Ianora A. Gene expression patterns and stress response in marine copepods. MARINE ENVIRONMENTAL RESEARCH 2012; 76:22-31. [PMID: 22030210 DOI: 10.1016/j.marenvres.2011.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are constantly exposed to both physical (e.g. temperature and salinity variations) and chemical (e.g. endocrine disruptor chemicals, heavy metals, hydrocarbons, diatom toxins, and other toxicants) stressors which they react to by activating a series of defense mechanisms. This paper reviews the literature on the defense systems, including detoxification enzymes and proteins (e.g. glutathione S-transferases, heat shock proteins, superoxide dismutase and catalase), studied in copepods at the molecular level. The data indicate high inter- and intra-species variability in copepod response, depending on the type of stressor tested, the concentration and exposure time, and the enzyme isoform studied. Ongoing -omics approaches will allow the identification of new genes which will give a more comprehensive overview of how copepods respond to specific stressors in laboratory and/or field conditions and the effects of these responses on higher trophic levels.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | |
Collapse
|
8
|
Trevisan R, Arl M, Sacchet CL, Engel CS, Danielli NM, Mello DF, Brocardo C, Maris AF, Dafre AL. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:85-93. [PMID: 22036013 DOI: 10.1016/j.aquatox.2011.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 μM for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH-CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH-CDNB conjugates.
Collapse
Affiliation(s)
- Rafael Trevisan
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Whalen KE, Starczak VR, Nelson DR, Goldstone JV, Hahn ME. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum. BMC Ecol 2010; 10:24. [PMID: 21122142 PMCID: PMC3022543 DOI: 10.1186/1472-6785-10-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/01/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs), which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. RESULTS Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate CYP4A/4F forms share identical amino acid residues at key positions within fatty acid substrate recognition sites. CONCLUSIONS These results demonstrate differential regulation of CYP transcripts in a marine consumer feeding on an allelochemical-rich diet, and significantly advance our understanding of both the adaptive molecular mechanisms that marine consumers use to cope with environmental chemical pressures and the evolutionary history of allelochemical-metabolizing enzymes in the CYP superfamily.
Collapse
Affiliation(s)
- Kristen E Whalen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Victoria R Starczak
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|