1
|
Wu CY, Lee YZ, Hu IC, Chiu LY, Ding WC, Wang J, Sue SC, Tate SI, Lyu PC. Backbone resonance assignments of dopamine N-acetyltransferase in free and cofactor-bound states. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10222-9. [PMID: 39934620 DOI: 10.1007/s12104-025-10222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Dopamine N-acetyltransferase (Dat), belonging to the GCN5-related N-acetyltransferase (GNAT) superfamily, is an arylalkylamine N-acetyltransferase (AANAT) that is involved in insects neurotransmitter inactivation and the development of insect cuticle sclerotization. By using the cofactor acetyl coenzyme A (Ac-CoA) as an acetyl group donor, Dat produces acetyl-dopamine through the reaction with dopamine. Although AANATs share similar structural features with the GNAT family, they have low sequence identities among insect AANATs (~ 40%) and between insect AANATs and vertebrate AANATs (~ 12%). A common noticed feature in GNATs is the Ac-CoA-binding induced conformational change, and this is important for further selection and catalysis of its substrate. In AANATs, the conformational changes help the sequential binding mechanism. Here, we report the 1H, 13C and 15N backbone resonance assignments of the 24 kDa Dat from Drosophila melanogaster in the free and Ac-CoA-bound states, and the chemical shift differences revealed a significant conformational change in the α1 region of Dat. These assignments provide a foundation for further investigations of the catalysis and structural regulation of Dat in solution.
Collapse
Affiliation(s)
- Chu-Ya Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
- Instrumentation Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Liang-Yuan Chiu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Wei-Cheng Ding
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Jing Wang
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
- Department of Medical Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Wang ZX, Liu YL, Teng FY, Lu YY, Qi YX. Arylalkylamine N-acetyltransferase 1 gene (AANAT1) regulates cuticle pigmentation and ovary development of the adult oriental fruit fly, Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103850. [PMID: 36265808 DOI: 10.1016/j.ibmb.2022.103850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The arylalkylamine N-acetyltransferase (AANAT) enzymes catalyze the acetyl-CoA-dependent acetylation of an amine or arylalkylamine, which is involved in important biological processes of insects. Here, we carried out the molecular and biochemical identification of an arylalkylamine N-acetyltransferase (AANAT) from the oriental fruit fly, Bactrocera dorsalis. Using a bacterial expression system, we expressed and purified the encoded recombinant BdorAANAT1-V3 protein. The purified recombinant protein acts on a wide range of substrates, including dopamine, tyramine, octopamine, serotonin, methoxytryptamine, and tryptamine, and shows similar substrate affinity (i.e., Km values: 0.16-0.26 mM) except for serotonin (Km = 0.74 mM) and dopamine (Km = 0.84 mM). Transcriptional profile analysis of BdorAANAT1 revealed that this gene is most prevalent in adults and abundant in the adult brain, gut, and ovary. Using the CRISPR/Cas9 technique, we successfully obtained a BdorAANAT1 knockout strain based on a wild-type strain (WT). Compared with the WT, the cuticle color of larvae and pupae is normal; however, in adult mutants, the yellow region of their thorax is darkly pigmented, and two black spots were evident at the abdomen's end. Moreover, the female BdorAANAT1 knockout mutant had a smaller ovary than the WT, and laid far fewer eggs. Loss of function of BdorAANAT1 caused by RNAi with mature adult females in which the reproductive system is fully developed had no effect on their fecundity. Altogether, these results indicate that BdorAANAT1 regulates ovary development. Our findings provide evidence for the insect AANAT1 modulating adult cuticle pigmentation and female fecundity.
Collapse
Affiliation(s)
- Zhuo-Xin Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ya-Lan Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fei-Yue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera: Miridae). INSECTS 2022; 13:986. [PMID: 36354810 PMCID: PMC9698757 DOI: 10.3390/insects13110986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cuticle coloration in insects is a consequence of the accumulation of pigments in a species-specific pattern. Numerous genes are involved in regulating the underlying processes of melanization and sclerotization, and their manipulation can be used to create externally visible markers of successful gene editing. To clarify the roles for many of these genes and examine their suitability as phenotypic markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for six genes (aaNAT, black, ebony, pale, tan, and yellow) were identified, with two variants for black. Sequence and phylogenetic analyses supported preliminary annotations as cuticle pigmentation genes. In accord with observable difference in color patterning, expression varied for each gene by developmental stage, adult age, body part, and sex. Knockdown by injection of dsRNA for each gene produced varied effects in adults, ranging from the non-detectable (black 1, yellow), to moderate decreases (pale, tan) and increases (black 2, ebony) in darkness, to extreme melanization (aaNAT). Based solely on its expression profile and highly visible phenotype, aaNAT appears to be the best marker for tracking transgenic L. hesperus.
Collapse
|
4
|
Takeda M, Suzuki T. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review. Front Physiol 2022; 13:867621. [PMID: 35812309 PMCID: PMC9257128 DOI: 10.3389/fphys.2022.867621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.
Collapse
Affiliation(s)
- Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
5
|
Zhang L, Tang Y, Chen H, Zhu X, Gong X, Wang S, Luo J, Han Q. Arylalkalamine N-acetyltransferase-1 acts on a secondary amine in the yellow fever mosquito, Aedes aegypti. FEBS Lett 2022; 596:1081-1091. [PMID: 35178730 DOI: 10.1002/1873-3468.14316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) in Aedes aegypti is primarily involved in cuticle pigmentation and formation. The reported arylalkylamine substrates are all primary amines. In this study, we report a novel substrate, a secondary amine, of Ae. aegypti aaNAT1. The recombinant aaNAT1 protein exhibited high activity to a secondary amine, epinephrine, which has not been reported for any aaNATs previously. Structure-activity relationship study demonstrated that aaNAT1 has an epinephrine binding site, and molecular docking and dynamic simulation showed that epinephrine is quite stable in the active cavity. Further functional studies demonstrated that epinephrine affected mosquito fecundity, egg hatching and development. The new biochemical function of aaNAT1 in metabolizing epinephrine could reduce some negative effects of the compound in the mosquito.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Xue Gong
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China.,One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
6
|
Kamruzzaman ASM, Hiragaki S, Watari Y, Natsukawa T, Yasuhara A, Ichihara N, Mohamed AA, Elgendy AM, Takeda M. Clock-controlled arylalkylamine N-acetyltransferase (aaNAT) regulates circadian rhythms of locomotor activity in the American cockroach, Periplaneta americana, via melatonin/MT2-like receptor. J Pineal Res 2021; 71:e12751. [PMID: 34091948 DOI: 10.1111/jpi.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.
Collapse
Affiliation(s)
- A S M Kamruzzaman
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Ashiya, Japan
| | - Takashi Natsukawa
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akie Yasuhara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza M Elgendy
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Makio Takeda
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
7
|
Wu CY, Hu IC, Yang YC, Ding WC, Lai CH, Lee YZ, Liu YC, Cheng HC, Lyu PC. An essential role of acetyl coenzyme A in the catalytic cycle of insect arylalkylamine N-acetyltransferase. Commun Biol 2020; 3:441. [PMID: 32796911 PMCID: PMC7427786 DOI: 10.1038/s42003-020-01177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Acetyl coenzyme A (Ac-CoA)-dependent N-acetylation is performed by arylalkylamine N-acetyltransferase (AANAT) and is important in many biofunctions. AANAT catalyzes N-acetylation through an ordered sequential mechanism in which cofactor (Ac-CoA) binds first, with substrate binding afterward. No ternary structure containing AANAT, cofactor, and substrate was determined, meaning the details of substrate binding and product release remain unclear. Here, two ternary complexes of dopamine N-acetyltransferase (Dat) before and after N-acetylation were solved at 1.28 Å and 1.36 Å resolution, respectively. Combined with the structures of Dat in apo form and Ac-CoA bound form, we addressed each stage in the catalytic cycle. Isothermal titration calorimetry (ITC), crystallography, and nuclear magnetic resonance spectroscopy (NMR) were utilized to analyze the product release. Our data revealed that Ac-CoA regulates the conformational properties of Dat to form the catalytic site and substrate binding pocket, while the release of products is facilitated by the binding of new Ac-CoA.
Collapse
Affiliation(s)
- Chu-Ya Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Chen Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Cheng Ding
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Instrumentation Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Chung Liu
- Institute of Population Sciences, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
O'Flynn BG, Prins KC, Shepherd BA, Forbrich VE, Suarez G, Merkler DJ. Identification of catalytically distinct arylalkylamine N-acetyltransferase splicoforms from Tribolium castaneum. Protein Expr Purif 2020; 175:105695. [PMID: 32681959 DOI: 10.1016/j.pep.2020.105695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
The assumption that structural or sequential homology between enzymes implies functional homology is a common misconception. Through in-depth structural and kinetic analysis, we are now beginning to understand the minute differences in primary structure that can alter the function of an enzyme completely. Alternative splicing is one method for which the activity of an enzyme can be controlled, simply by altering its length. Arylalkylamine N-acetyltransferase A (AANATA) in D. melanogaster, which catalyzes the N-acetylation of biogenic amines, has multiple splicoforms - alternatively spliced enzyme isoforms - with differing tissue distribution. As demonstrated here, AANAT1 from Tribolium castaneum is another such enzyme with multiple splicoforms. A screening assay was developed and utilized to determine that, despite only a 35 amino acid truncation, the shortened form of TcAANAT1 is a more active form of the enzyme. This implies regulation of enzyme metabolic activity via alternative splicing.
Collapse
Affiliation(s)
- Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Karin Claire Prins
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Britney A Shepherd
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | | | - Gabriela Suarez
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
9
|
Battistini MR, O'Flynn BG, Shoji C, Suarez G, Galloway LC, Merkler DJ. Bm-iAANAT3: Expression and characterization of a novel arylalkylamine N-acyltransferase from Bombyx mori. Arch Biochem Biophys 2018; 661:107-116. [PMID: 30452894 DOI: 10.1016/j.abb.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023]
Abstract
The arylalkylamine N-acyltransferases (AANATs) are enzymes that catalyze the acyl-CoA-dependent formation of N-acylarylalkylamides: acyl-CoA + arylalkylamine → N-acylarylalkylamides + CoA-SH. Herein, we describe our study of a previously uncharacterized AANAT from Bombyx mori: Bm-iAANAT3. Bm-iAANAT3 catalyzes the direct formation of N-acylarylalkylamides and accepts a broad range of short-chain acyl-CoA thioesters and amines as substrates. Acyl-CoA thioesters possessing an acyl chain length >10 carbon atoms are not substrates for Bm-iAANAT3. We report that Bm-iAANAT3 is a "versatile generalist", most likely, functioning in amine acetylation - a reaction in amine inactivation/excretion, cuticle sclerotization, and melanism. We propose a kinetic and chemical mechanism for Bm-iAANAT3 that is consistent with our steady-state kinetic analysis, dead-end inhibition studies, determination of the pH-rate profiles, and site-directed mutagenesis of a catalytically important amino acid in Bm-iAANAT3. These mechanistic studies of Bm-iAANAT3 will foster the development of novel compounds targeted against this enzyme and other insect AANATs for the control of insect pests.
Collapse
Affiliation(s)
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Christopher Shoji
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabriela Suarez
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lamar C Galloway
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
10
|
Anderson RL, Battistini MR, Wallis DJ, Shoji C, O'Flynn BG, Dillashaw JE, Merkler DJ. Bm-iAANAT and its potential role in fatty acid amide biosynthesis in Bombyx mori. Prostaglandins Leukot Essent Fatty Acids 2018; 135:10-17. [PMID: 30103920 PMCID: PMC6093294 DOI: 10.1016/j.plefa.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this research is to unravel the substrate specificity and kinetic properties of an insect arylalkylamine N-acyltransferase from Bombyx mori (Bm-iAANAT) and to determine if this enzyme will catalyze the formation of long chain N-acylarylalkylamides in vitro. However, the determination of substrates and products for Bm-iAANAT in vitro is no guarantee that these same molecules are substrates and products for the enzyme in the organism. Therefore, RT-PCR was performed to detect the Bm-iAANAT transcripts and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis was performed on purified lipid extracts from B. mori larvae (fourth instar, Bmi4) to determine if long chain fatty acid amides are produced in B. mori. Ultimately, we found that recombinant Bm-iAANAT will utilize long-chain acyl-CoA thioesters as substrates and identified Bm-iAANAT transcripts and long-chain fatty acid amides in Bmi4. Together, these data show Bm-iAANAT will catalyze the formation of long-chain N-acylarylalkylamides in vitro and provide evidence demonstrating that Bm-iAANAT has a role in fatty acid amide biosynthesis in B. mori, as well.
Collapse
Affiliation(s)
- Ryan L Anderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | | - Dylan J Wallis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Christopher Shoji
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - John E Dillashaw
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
O'Flynn BG, Suarez G, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acyltransferases: Mechanism and Role in Fatty Acid Amide Biosynthesis. Front Mol Biosci 2018; 5:66. [PMID: 30094237 PMCID: PMC6070697 DOI: 10.3389/fmolb.2018.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.
Collapse
Affiliation(s)
| | | | | | - David J. Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
O'Flynn BG, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acetyltransferases as Potential Targets for Novel Insecticide Design. ACTA ACUST UNITED AC 2018; 4. [PMID: 29552676 DOI: 10.21767/2471-8084.100053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Crop protection against destructive pests has been at the forefront of recent agricultural advancements. Rapid adaptive evolution has led to insects becoming immune to the chemicals employed to quell their damage. Insecticide resistance is a serious problem that negatively impacts food production, food storage, human health, and the environment. To make matters more complicated are the strict regulations in place on insecticide development, driven by rising public concern relating to the harmful effects these chemicals have on the environment and on society. A key component to solving the problem of insecticide resistance, while keeping public welfare in mind, is the identification of novel insect-specific protein targets. One unexplored target for the development of new targeted insecticides are the insect arylalkylamine N-acetyltransferases (iAANATs). This group of enzymes, shown to be intrinsic in the development of the insect cuticle, is an untapped well of potential for target-specific inhibition, while offering enough variety to ensure protection for non-target enzymes. In this review, we highlight kinetic, genetic and bioinformatic data showing that the iAANATs are intriguing insecticide targets that should be specific only for particular insect pests. Such a pest-specific insecticide would minimize environmental harm by eliminating such non-discriminate attacks which have made insecticides such a highly regulated industry, and would have negligible toxicity to humans and other mammals.
Collapse
Affiliation(s)
| | - Aidan J Hawley
- Department of Chemistry, University of South Florida, USA
| | | |
Collapse
|
13
|
Dempsey DR, Nichols DA, Battistini MR, Pemberton O, Ospina SR, Zhang X, Carpenter AM, O'Flynn BG, Leahy JW, Kanwar A, Lewandowski EM, Chen Y, Merkler DJ. Structural and Mechanistic Analysis of Drosophila melanogaster Agmatine N-Acetyltransferase, an Enzyme that Catalyzes the Formation of N-Acetylagmatine. Sci Rep 2017; 7:13432. [PMID: 29044148 PMCID: PMC5647378 DOI: 10.1038/s41598-017-13669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 09/26/2017] [Indexed: 02/05/2023] Open
Abstract
Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.3 Å, which points towards specific amino acids that may function in catalysis or active site formation. Using the crystal structure, primary sequence alignment, pH-activity profiles, and site-directed mutagenesis, we evaluated a series of active site amino acids in order to assign their functional roles in AgmNAT. More specifically, pH-activity profiles identified at least one catalytically important, ionizable group with an apparent pKa of ~7.5, which corresponds to the general base in catalysis, Glu-34. Moreover, these data led to a proposed chemical mechanism, which is consistent with the structure and our biochemical analysis of AgmNAT.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Derek A Nichols
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.,Moffitt Cancer Center, Tampa, FL, 33612, United States
| | - Matthew R Battistini
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - Orville Pemberton
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | | | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Anne-Marie Carpenter
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,University of Florida, College of Medicine, Gainesville, FL, 32610-0216, United States
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.,Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.,Florida Center of Excellence for Drug Discovery and Innovation, 3720 Spectrum Boulevard, Suite 305, Tampa, FL, 33612, United States
| | - Ankush Kanwar
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States
| | - Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, 33612, United States.
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, United States.
| |
Collapse
|
14
|
Hiragaki S, Suzuki T, Mohamed AAM, Takeda M. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol 2015; 6:113. [PMID: 25918505 PMCID: PMC4394704 DOI: 10.3389/fphys.2015.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/25/2015] [Indexed: 11/26/2022] Open
Abstract
The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system. Therefore, the enzyme plays both unique and universal roles in insects. The unique role of iaaNATs in physiological regulation urges the targeting of this system for integrated pest management (IPM). We indeed showed a successful example of chemical compound screening with reconstituted enzyme and further attempts seem promising.
Collapse
Affiliation(s)
- Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| | - Takeshi Suzuki
- Department of Biology, The University of Western OntarioLondon, ON, Canada
| | | | - Makio Takeda
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| |
Collapse
|
15
|
Mohamed AAM, Wang Q, Bembenek J, Ichihara N, Hiragaki S, Suzuki T, Takeda M. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi. PLoS One 2014; 9:e92680. [PMID: 24667367 PMCID: PMC3965458 DOI: 10.1371/journal.pone.0092680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4 °C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNA(NAT) caused dysfunction of photoperiodism. dsRNA(PER) upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNA(NAT) decreased melatonin while dsRNA(PER) increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNA(NAT), to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.
Collapse
Affiliation(s)
| | - Qiushi Wang
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Jadwiga Bembenek
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| |
Collapse
|
16
|
Wang Q, Mohamed AAM, Takeda M. Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism? PLoS One 2013; 8:e79381. [PMID: 24223937 PMCID: PMC3817057 DOI: 10.1371/journal.pone.0079381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/22/2013] [Indexed: 11/18/2022] Open
Abstract
The release of prothoracicotropic hormone, PTTH, or its blockade is the major endocrine switch regulating the developmental channel either to metamorphosis or to pupal diapause in the Chinese silk moth, Antheraea pernyi. We have cloned cDNAs encoding two types of serotonin receptors (5HTRA and B). 5HTRA-, and 5HTRB-like immunohistochemical reactivities (-ir) were colocalized with PTTH-ir in two pairs of neurosecretory cells at the dorsolateral region of the protocerebrum (DL). Therefore, the causal involvement of these receptors was suspected in PTTH release/synthesis. The level of mRNA(5HTRB) responded to 10 cycles of long-day activation, falling to 40% of the original level before activation, while that of 5HTRA was not affected by long-day activation. Under LD 16:8 and 12:12, the injection of dsRNA(5HTRB) resulted in early diapause termination, whereas that of dsRNA(5HTRA) did not affect the rate of diapause termination. The injection of dsRNA(5HTRB) induced PTTH accumulation, indicating that 5HTRB binding suppresses PTTH synthesis also. This conclusion was supported pharmacologically; the injection of luzindole, a melatonin receptor antagonist, plus 5th inhibited photoperiodic activation under LD 16:8, while that of 5,7-DHT, induced emergence in a dose dependent fashion under LD 12:12. The results suggest that 5HTRB may lock the PTTH release/synthesis, maintaining diapause. This could also work as diapause induction mechanism.
Collapse
Affiliation(s)
- Qiushi Wang
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|