1
|
Mit C, Beaudouin R, Palluel O, Turiès C, Daniele G, Giroud B, Bado-Nilles A. Exposure and hazard of bisphenol A, S and F: a multi-biomarker approach in three-spined stickleback. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3343-3356. [PMID: 37436621 DOI: 10.1007/s11356-023-28462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Due to the estrogenic behavior of bisphenol (BP) A, industries have developed many substitutes, such as BPS and BPF. However, due to their structural similarities, adverse effects on reproduction are currently observed in various organisms, including fish. Even if new results have shown impacts of these bisphenols on many other physiological functions, their mode of action remains unclear. In this context, we proposed to better understand the impact of BPA, BPS, and BPF on immune responses (leucocyte sub-populations, cell death, respiratory burst, lysosomal presence, and phagocytic activity) and on biomarkers of metabolic detoxification (ethoxyresorufin-O-deethylase, EROD, and glutathione S-transferase, GST) and oxidative stress (glutathione peroxidase, GPx, and lipid peroxidation with thiobarbituric acid reactive substance method, TBARS) in an adult sentinel fish species, the three-spined stickleback. In order to enhance our understanding of how biomarkers change over time, it is essential to determine the internal concentration responsible for the observed responses. Therefore, it is necessary to explore the toxicokinetics of bisphenols. Thus, sticklebacks were exposed either to 100 μg/L of BPA, BPF or BPS for 21 days, or for seven days to 10 and 100 μg/L of BPA or BPS followed by seven days of depuration. Although BPS has very different TK, due to its lower bioaccumulation compared to BPA and BPF, BPS affect oxidative stress and phagocytic activity in the same way. For those reasons, the replacement of BPA by any substitute should be made carefully in terms of risk assessment on aquatic ecosystems.
Collapse
Affiliation(s)
- Corentin Mit
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Olivier Palluel
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Cyril Turiès
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Gaëlle Daniele
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Barbara Giroud
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Anne Bado-Nilles
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France.
| |
Collapse
|
2
|
Serafini PP, Righetti BPH, Vanstreels RET, Bugoni L, Piazza CE, Lima D, Mattos JJ, Kolesnikovas CKM, Pereira A, Maraschin M, Piccinin I, Guilford T, Gallo L, Uhart MM, Lourenço RA, Bainy ACD, Lüchmann KH. Biochemical and molecular biomarkers and their association with anthropogenic chemicals in wintering Manx shearwaters (Puffinus puffinus). MARINE POLLUTION BULLETIN 2024; 203:116398. [PMID: 38723548 DOI: 10.1016/j.marpolbul.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024]
Abstract
Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.
Collapse
Affiliation(s)
- Patricia P Serafini
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio, Florianópolis, SC, Brazil
| | - Bárbara P H Righetti
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Ralph E T Vanstreels
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Leandro Bugoni
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Clei E Piazza
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Isadora Piccinin
- Plant Morphogenesis and Biochemistry Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Tim Guilford
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Luciana Gallo
- Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina; Coordinación Regional de Inocuidad y Calidad Agroalimentaria, Regional Patagonia Sur, Servicio Nacional de Sanidad y Calidad Agroalimentaria, Puerto Madryn, Chubut, Argentina
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Rafael A Lourenço
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Afonso C D Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Karim H Lüchmann
- Departamento de Educação Científica e Tecnológica, Universidade do Estado de Santa Catarina - UDESC, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Mohan S, Jacob J, Malini NA, Prabhakar R, Kayalakkakathu RG. Biochemical responses and antioxidant defense mechanisms in Channa Striatus exposed to Bisphenol S. J Biochem Mol Toxicol 2024; 38:e23651. [PMID: 38348707 DOI: 10.1002/jbt.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol S (BPS), a BPA analog and a safer alternative, is utilized in a diverse range of industrial applications, such as making polycarbonate plastics, epoxy resins, thermal receipt papers, and currency bills. Recently, the increased use of BPS in containers and packages for daily life has been interrogated due to its identical chemical structure and probable endocrine-disrupting actions as BPA has. The present study aimed to evaluate the alterations in biochemical indices and antioxidant enzymes as certain indicators of the endocrine-disrupting effect of BPS in Channa striatus, a freshwater fish. BPS-exposed fish species were subjected to three sub-lethal concentrations of BPS (1, 4, and 12 ppm) and observed after an interval of 7 and 21 days. Exposure to BPS caused a reduction in the level of protein in muscle, gonads and the liver due to an impairment of protein synthesis. Levels of cholesterol in the muscle, gonads, and liver of BPS-exposed fish were found to be decreased after treatment, indicating either an inhibition of cholesterol biosynthesis in the liver or reduced absorption of dietary cholesterol. The levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase showed remarkable increases, while the activity of glutathione S-transferase decreased considerably, indicating the antioxidant defense mechanism to counteract the oxidative stress induced by BPS. Moreover, a significant increase was noted in the level of lipid peroxidation products, like malondialdehyde and conjugate diene, which represent biomarkers of oxidative stress. The histoarchitecture changes were also observed in the liver, muscle and gonads of BPS-treated fish species. The present study showed that sub-lethal exposure to BPS significantly influenced the activities of these enzymes and peroxidation byproducts. From this study, it is concluded that BPS-caused toxic effects in fish species lead to an imbalance in the antioxidant defense system. It is clearly indicated that BPS toxicity could lead to susceptible oxidative stress in various tissues and could damage vital organs.
Collapse
Affiliation(s)
- Sini Mohan
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Jubi Jacob
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Nair Achuthan Malini
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Reshma Prabhakar
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | | |
Collapse
|
4
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|
5
|
Probiotics Enhance Bone Growth and Rescue BMP Inhibition: New Transgenic Zebrafish Lines to Study Bone Health. Int J Mol Sci 2022; 23:ijms23094748. [PMID: 35563140 PMCID: PMC9102566 DOI: 10.3390/ijms23094748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Zebrafish larvae, especially gene-specific mutants and transgenic lines, are increasingly used to study vertebrate skeletal development and human pathologies such as osteoporosis, osteopetrosis and osteoarthritis. Probiotics have been recognized in recent years as a prophylactic treatment for various bone health issues in humans. Here, we present two new zebrafish transgenic lines containing the coding sequences for fluorescent proteins inserted into the endogenous genes for sp7 and col10a1a with larvae displaying fluorescence in developing osteoblasts and the bone extracellular matrix (mineralized or non-mineralized), respectively. Furthermore, we use these transgenic lines to show that exposure to two different probiotics, Bacillus subtilis and Lactococcus lactis, leads to an increase in osteoblast formation and bone matrix growth and mineralization. Gene expression analysis revealed the effect of the probiotics, particularly Bacillus subtilis, in modulating several skeletal development genes, such as runx2, sp7, spp1 and col10a1a, further supporting their ability to improve bone health. Bacillus subtilis was the more potent probiotic able to significantly reverse the inhibition of bone matrix formation when larvae were exposed to a BMP inhibitor (LDN212854).
Collapse
|
6
|
Afzal G, Ahmad HI, Hussain R, Jamal A, Kiran S, Hussain T, Saeed S, Nisa MU. Bisphenol A Induces Histopathological, Hematobiochemical Alterations, Oxidative Stress, and Genotoxicity in Common Carp ( Cyprinus carpio L.). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5450421. [PMID: 35126815 PMCID: PMC8816551 DOI: 10.1155/2022/5450421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is one of the environmental endocrine disrupting toxicants and is widely used in the industry involving plastics, polycarbonate, and epoxy resins. This study was designed to investigate the toxicological effects of BPA on hematology, serum biochemistry, and histopathology of different organs of common carp (Cyprinus carpio). A total of 60 fish were procured and haphazardly divided into four groups. Each experimental group contained 15 fish. The fish retained in group A was kept as the untreated control group. Three levels of BPA 3.0, 4.5, and 6 mg/L were given to groups B, C, and D for 30 days. Result indicated significant reduction in hemoglobin (Hb), lymphocytes, packed cell volume (PCV), red blood cells (RBC), and monocytes in a dose-dependent manner as compared to the control group. However, significantly higher values of leucocytes and neutrophils were observed in the treated groups (P < 0.05). Results on serum biochemistry revealed that the quantity of glucose, cholesterol, triglycerides, urea, and creatinine levels was significantly high (P < 0.05). Our study results showed significantly (P < 0.05) increase level of oxidative stress parameters like reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and lower values of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in treated groups (4.5 mg/L and 6 mg/L)) in the brain, liver, gills, and kidneys. Our study depicted significant changes in erythrocytes (pear shaped erythrocytes, leptocytes, microcytes, spherocytes, erythrocytes with broken, lobed, micronucleus, blabbed, vacuolated nucleus, and nuclear remnants) among treated groups (4.5 mg/L and 6 mg/L). Comet assay showed increased genotoxicity in different tissues including the brain, liver, gills, and kidneys in the treated fish group. Based on the results of our experiment, it can be concluded that the BPA exposure to aquatic environment is responsible for deterioration of fish health, performance leading to dysfunction of multiple vital organs.
Collapse
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, Makkah 715, Saudi Arabia
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mehr un Nisa
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Giommi C, Habibi HR, Candelma M, Carnevali O, Maradonna F. Probiotic Administration Mitigates Bisphenol A Reproductive Toxicity in Zebrafish. Int J Mol Sci 2021; 22:ijms22179314. [PMID: 34502222 PMCID: PMC8430984 DOI: 10.3390/ijms22179314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Although the use of bisphenol A (BPA) has been banned in a number of countries, its presence in the environment still creates health issues both for humans and wildlife. So far, BPA toxicity has been largely investigated on different biological processes, from reproduction to development, immune system, and metabolism. In zebrafish, Danio rerio, previous studies revealed the ability of environmentally relevant concentrations of this contaminant to significantly impair fertility via epigenetic modification. In addition, several studies demonstrated the ability of different probiotic strains to improve organism health. This study provides information on the role of the probiotic mixture SLAb51 to counteract adverse BPA effects on reproduction. A 28-day trial was set up with different experimental groups: BPA, exposed to 10 µg/L BPA; P, receiving a dietary supplementation of SLAb51 at a final concentration of 109 CFU/g; BPA+P exposed to 10 µg/L BPA and receiving SLAb51 at a final concentration of 109 CFU/g and a C group. Since oocyte growth and maturation represent key aspects for fertility in females, studies were performed on isolated class III (vitellogenic) and IV (in maturation) follicles and liver, with emphasis on the modulation of the different vitellogenin isoforms. In males, key signals regulating spermatogenesis were investigated. Results demonstrated that in fish exposed to the combination of BPA and probiotic, most of the transcripts were closer to C or P levels, supporting the hypothesis of SLAb51 to antagonize BPA toxicity. This study represents the first evidence related to the use of SLAb51 to improve reproduction and open new fields of investigation regarding its use to reduce endocrine disrupting compound impacts on health.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Correspondence: (O.C.); (F.M.)
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (M.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Correspondence: (O.C.); (F.M.)
| |
Collapse
|
8
|
Forner-Piquer I, Beato S, Piscitelli F, Santangeli S, Di Marzo V, Habibi HR, Maradonna F, Carnevali O. Effects of BPA on zebrafish gonads: Focus on the endocannabinoid system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114710. [PMID: 32417572 DOI: 10.1016/j.envpol.2020.114710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders. The ECS is a lipid-based signaling system (cannabinoid receptors, endocannabinoids and enzymatic machinery) involved in several physiological functions. The main goal of the present study was to assess the effects of two environmental concentrations of BPA (10 and 20 μg/L) on the ECS in 1-year old zebrafish gonads. In males, BPA increased the gonadosomatic index (GSI) and altered testicular levels of endocannabinoids as well as reduced the testicular area occupied by spermatogonia. In male liver, exposure to 20 μg/L BPA significantly increased vitellogenin (vtg) transcript levels. In female zebrafish, BPA altered ovarian endocannabinoid levels, elevated hepatic vtg mRNA levels as well as increased the percentage of vitellogenic oocytes in the ovaries. In conclusion, exposure to two environmentally relevant concentrations of BPA altered the ECS and consequently, gonadal function in both male and female zebrafish.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Beato
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
9
|
Olivares-Rubio HF, Salazar-Coria L, Romero-López JP, Domínguez-López ML, García-Latorre EA, Vega-López A. Fatty acid metabolism and brain mitochondrial performance of juvenile Nile tilapia (Oreochromis niloticus) exposed to the water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110624. [PMID: 32302862 DOI: 10.1016/j.ecoenv.2020.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Crude oil and its derivatives are still the primary source of energy for humankind. However, during its transportation and treatment, spills of this resource can occur in aquatic environments. Nile tilapia is one of the most globally widespread fish species. This species is even found in brackish water due to its tolerance to salinity and pollution. In this study, the performance of brain cells (mitochondrial membrane potential [ΔΨm], calcium [Ca2+] and O2 and H2O2 levels) exposed to crude oil was assessed. In addition, fatty acid metabolism (cholesterol concentration and fatty acid synthase [FAS], acyl CoA-oxidase [AOX] and catalase [CAT] activities) in the brain, heart, liver and intestine of Nile tilapia exposed to the water-accommodated fraction (WAF) of 0.01, 0.1 or 1 g/L Maya crude oil (MCO) for 96 h were evaluated. After exposure, in brain cells, there were only increases in ROS and slight reductions in ΔΨm. Exposure to WAF of MCO induced and increased the levels of cholesterol and altered FAS and AOX activities in all examined tissues. The brain is the most susceptible organ to alterations in the activity of fatty acid metabolic enzymes and cholesterol levels relative to the heart, liver and intestine. The correlation between inhibition of the activity of CAT and AOX suggests a possible reduction in the proliferation and size of peroxisomes. Most biomarkers were significantly altered in the brains of Nile tilapia exposed to the WAF containing 1 g/L MCO in comparison to the control.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico; Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano Del Petróleo, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, CP 07730, Ciudad de México, Mexico
| | - J Pablo Romero-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - María Lilia Domínguez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Ethel A García-Latorre
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Inmunoquímica I, Prol Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, CP 11340, Ciudad de México, México, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07738, Ciudad de México, México, Mexico.
| |
Collapse
|
10
|
Di Marco Pisciottano I, Mita GD, Gallo P. Bisphenol A, octylphenols and nonylphenols in fish muscle determined by LC/ESI-MS/MS after affinity chromatography clean up. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:139-147. [DOI: 10.1080/19393210.2020.1740335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Gustavo Damiano Mita
- National Laboratory of Endocrine Disruptors, Consorzio Interuniversitario Istituto Nazionale Biostrutture E Biosistemi, Napoli, Italy
| | - Pasquale Gallo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Italy
| |
Collapse
|
11
|
Forner-Piquer I, Fakriadis I, Mylonas CC, Piscitelli F, Di Marzo V, Maradonna F, Calduch-Giner J, Pérez-Sánchez J, Carnevali O. Effects of Dietary Bisphenol A on the Reproductive Function of Gilthead Sea Bream ( Sparus aurata) Testes. Int J Mol Sci 2019; 20:ijms20205003. [PMID: 31658598 PMCID: PMC6835794 DOI: 10.3390/ijms20205003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC), was administered by diet to gilthead sea bream (Sparus aurata) in order to study its effects on the endocannabinoid system (ECS) and gonadal steroidogenesis. 2-year-old male gilthead sea bream were fed with two different concentrations of BPA (LOW at 4 and HIGH at 4000 µg/kg body weight for 21 days during the reproductive season. Exposure to 4000 µg BPA/kg bw/day (BPA HIGH) reduced sperm motility and altered the straight-line velocity (VSL) and linearity (LIN). Effects on steroidogenesis were evident, with testosterone (T) being up-regulated by both treatments and 11-ketotestosterone (11-KT) down-regulated by BPA HIGH. Plasma levels of 17β-estradiol (E2) were not affected. The Gonadosomatic Index (GSI) increased in the BPA HIGH group. Interestingly, the levels of endocannabinoids and endocannabinoid-like compounds were significantly reduced after both treatments. Unpredictably, a few changes were noticed in the expression of genes coding for ECS enzymes, while the receptors were up-regulated depending on the BPA dose. Reproductive markers in testis (leptin receptor (lepr), estrogen receptors (era, erb), progesterone receptors (pr) and the gonadotropin releasing hormone receptor (gnrhr)) were up-regulated. BPA induced the up-regulation of the hepatic genes involved in oogenesis (vitellogenin (vtg) and zona pellucida 1 (zp1)).
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
12
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
13
|
Gallo P, Di Marco Pisciottano I, Fattore M, Rimoli MG, Seccia S, Albrizio S. A method to determine BPA, BPB, and BPF levels in fruit juices by liquid chromatography coupled to tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1871-1881. [PMID: 31490737 DOI: 10.1080/19440049.2019.1657967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The monitoring of the contamination levels of bisphenol A (BPA) and its congeners bisphenol B (BPB) and bisphenol F (BPF) in foodstuffs is a necessary process for assessment of consumers' risk. After development and validation of a method using Strata® C18-E cartridge cleanup with detection by liquid chromatography coupled to tandem mass spectrometry, forty-six samples of fruit juices, sold on Italian markets, have been analysed to assess the concentration of BPA, BPB and BPF. BPB and BPF were not detected in any samples, BPA was found in 33 % of the samples. The observed levels ranged from 0.50 ng mL-1 to 2.85 ng mL-1. Potential Daily Intakes (PDI) of BPA for Italian populations were calculated by the budget method model. PDIs ranged from 0.012 to 0.285 μg kg-1 bw day-1. None of the calculated values exceeded the current temporary TDI of 4 μg kg-1 bw day-1.
Collapse
Affiliation(s)
- Pasquale Gallo
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | | | - Maria Grazia Rimoli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Serenella Seccia
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Stefania Albrizio
- Consorzio Interuniversitario INBB, Rome, Italy.,Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
14
|
Cirillo T, Esposito F, Fasano E, Scognamiglio G, Di Marco Pisciottano I, Mita GD, Gallo P. BPA, BPB, BPF, BADGE and BFDGE in canned beers from the Italian market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:268-274. [PMID: 31412749 DOI: 10.1080/19393210.2019.1650835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A survey of BPA, BPB, BPF, BADGE and BFDGE contamination in canned beers from the Italian market is reported. An analytical method for the determination of these five bisphenols down to 0.5 ng mL-1 using UPLC with fluorescence detection was developed and validated. A total of 40 canned beers were collected from the market in Southern Italy and analysed. The results showed that only 14 samples were contaminated at concentrations ranging from 0.5 to 2.5 ng mL-1 by at least BPA, BPF and BADGE. No contamination by BPB and BFDGE was detected. This survey suggests that canned beers from the Italian market should represent neither a relevant source of intake of bisphenols nor a risk for consumer's health.
Collapse
Affiliation(s)
- Teresa Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Evelina Fasano
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | | | | | - Gustavo Damiano Mita
- Consorzio interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Napoli, Italy
| | - Pasquale Gallo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| |
Collapse
|
15
|
Carnevali O, Santobuono M, Forner-Piquer I, Randazzo B, Mylonas CC, Ancillai D, Giorgini E, Maradonna F. Dietary diisononylphthalate contamination induces hepatic stress: a multidisciplinary investigation in gilthead seabream (Sparus aurata) liver. Arch Toxicol 2019; 93:2361-2373. [PMID: 31230093 DOI: 10.1007/s00204-019-02494-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
In this study, adult gilthead seabream (Sparus aurata) were exposed for 21 days to Di-iso-nonylphthalte (DiNP at 15 and 1500 μg kg-1 bw day-1) via the diet. This plastic additive has been recently introduced to replace the di-(2-ethylhexyl)phthalate, the toxicity of which has been demonstrated conclusively both in vivo and in vitro trials. An analysis of a set of biomarkers involved in stress and immune response provides evidence of hepatic toxicity by DiNP in the present study. Both hsp70 and gr mRNA levels were upregulated significantly by DiNP, while plasma cortisol increased only in fish fed with the lowest DiNP dose. The oxidative stress markers g6pdh, glut red, gpx1 and CAT were upregulated by DiNP; gst mRNA was induced by the high dose and gck mRNA was downregulated significantly by the low dose. The mRNA levels of genes involved in the immune response, such as pla2, 5-lox, tnfa and cox2, were upregulated significantly only by the high dose of DiNP, while il1 mRNA increases in both doses. These molecular evidences were complemented with features obtained by Fourier Transform Infrared Imaging (FTIRI) analysis regarding the hepatic distribution of the main biological macromolecules. The FTIRI analysis showed an alteration of biochemical composition in DiNP samples. In particular, the low dose of DiNP induced an increase of saturated and unsaturated lipids and phosphorylated proteins, and a decrease of glycogen levels. The levels of caspase did not change significantly in the study, suggesting that DiNP does not activate apoptosis. Finally, the results also suggested the onset of hepatic oxidative stress and the activation of immune response, adding new knowledge to the already described hepatic DiNP toxicity.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Martina Santobuono
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Isabel Forner-Piquer
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Basilio Randazzo
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Daniele Ancillai
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
16
|
Environmental Pollutants Impair Transcriptional Regulation of the Vitellogenin Gene in the Burrowing Mud Crab (Macrophthalmus Japonicus). APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vitellogenesis is a pivotal reproductive process of the yolk formation in crustaceans. Vitellogenin (VTG) is the precursor of main yolk proteins and synthesized by endogenous estrogens. The intertidal mud crab (Macrophthalmus japonicus) inhabits sediment and is a good indicator for assessing polluted benthic environments. The purpose of this study was to identify potential responses of M. japonicus VTG under environmental stresses caused by chemical pollutants, such as 1, 10, and 30 µg L−1 concentrations in di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA) and irgarol. We characterized the M. japonicus VTG gene and analyzed the transcriptional expression of VTG mRNA in M. japonicus exposed to various chemicals and exposure periods. A phylogenetic analysis revealed that the M. japonicus VTG clustered closely with Eriocheir sinensis (Chinese mitten crab) VTG, in contrast with another clade that included the VTG ortholog of other crabs. The basal level of VTG expression was the highest in the hepatopancreas and ovaries, and tissues. VTG expression significantly increased in the ovaries and hepatopancreas after 24 h exposure to DEHP. Increased responses of VTG transcripts were found in M. japonicus exposed to DEHP and BPA for 96 h; however, VTG expression decreased in both tissues after irgarol exposure. After an exposure of 7 d, VTG expression significantly increased in the ovaries and hepatopancreas for all concentrations of all chemicals. These results suggest that the crustacean embryogenesis and endocrine processes are impaired by the environmental chemical pollutants DEHP, BPA, and irgarol.
Collapse
|
17
|
Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:250-259. [PMID: 30577020 DOI: 10.1016/j.scitotenv.2018.12.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg-1 bw day-1) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg-1 bw day-1), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture. The analysis conducted in the muscle using infrared microspectroscopy, molecular biology and biochemical assays, showed, in fish fed BPA contaminated diets, a decrease of unsaturated lipids and an increase of triglycerides and saturated alkyl chains. Conversely, in fish fed DiNP, a decrease of lipid content, caused by a reduction of both saturated and unsaturated chains and triglycerides was measured. Protein content was decreased by both xenobiotics evidencing a novel macromolecular target affected by these environmental contaminants. In addition, in all treated groups, proteins resulted more phosphorylated than in controls. Calpain and cathepsin levels, orchestrating protein turnover, were deregulated by both xenobiotics, evidencing alterations of muscle composition and texture. In conclusion, the results obtained suggest the ability of BPA and DiNP to modify the muscle macromolecular building, advising this tissue as a target of Endocrine-Disrupting Chemicals (EDCs) and providing a set of biomarkers as possible monitoring endpoints to develop novel OEDC test guidelines.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Debora Canuti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy.
| |
Collapse
|
18
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019; 10:184. [PMID: 30906313 PMCID: PMC6418038 DOI: 10.3389/fgene.2019.00184] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
19
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019. [PMID: 30906313 DOI: 10.3389/fgene.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
20
|
Santonicola S, Ferrante MC, Murru N, Gallo P, Mercogliano R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. J Dairy Sci 2018; 102:1007-1013. [PMID: 30594366 DOI: 10.3168/jds.2018-15338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023]
Abstract
Chemical hazards may enter the milk chain during primary production. The study, for the first time, investigated the occurrence of bisphenol A (BPA) levels in cow milk samples collected on the farm following manual or mechanical milking and from the cooling tank. We applied a new monitoring model based on the identification of the hazards at each stage of the milk chain to identify potential pathways for contamination along the milk chain. We evaluated exposure to BPA through milk consumption based on detected contamination levels and the temporary tolerable daily intake established by the European Food Safety Authority (EFSA). Milk samples (n = 72) were analyzed using liquid chromatography with fluorescence detection. The mean BPA concentrations were 0.757 µg/L in manually milked samples, 0.580 µg/L in mechanically milked samples, and 0.797 µg/L in milk from the cooling tank. Bisphenol A occurred in the milk chain as a result of different stages of milking, and reached the highest levels at the end of the milk chain. Although the dietary intake of BPA was below the EFSA's temporary tolerable daily intake, exposure to BPA, even at low doses, through milk consumption represents a public health concern. Therefore, to ensure milk safety, new monitoring plans should be applied based on the identification of hazards at each stage of the milk chain.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Veterinary Medicine and Animal Production, University of Naples, 80137 Naples, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples, 80137 Naples, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples, 80137 Naples, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples, 80137 Naples, Italy.
| |
Collapse
|
21
|
Carnevali O, Santangeli S, Forner-Piquer I, Basili D, Maradonna F. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1561-1576. [PMID: 29948447 DOI: 10.1007/s10695-018-0507-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| | - Stefania Santangeli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- INBB Consorzio Interuniversitario di Biostrutture e Biosistemi, 00136, Rome, Italy.
| |
Collapse
|
22
|
Forner-Piquer I, Santangeli S, Maradonna F, Verde R, Piscitelli F, di Marzo V, Habibi HR, Carnevali O. Role of Bisphenol A on the Endocannabinoid System at central and peripheral levels: Effects on adult female zebrafish. CHEMOSPHERE 2018; 205:118-125. [PMID: 29689525 DOI: 10.1016/j.chemosphere.2018.04.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA), a widely used chemical to produce polycarbonate plastics, has become an ubiquitous pollutant due to its extensive use. Its endocrine disrupting properties have been documented in several studies, as well as its potential to induce metabolic and reproductive impairments at environmentally relevant concentrations. Recent insights highlighted the role of the Endocannabinoid System (ECS) in energy homeostasis and lipid metabolism. In fact, disruption of the ECS may induce metabolic alterations among other effects. Thus, the main objective of this study was to investigate the disruptive effects of environmentally relevant concentrations of BPA on the ECS of female zebrafish liver and brain. Adult female zebrafish were exposed for 3 weeks to three different concentrations of BPA (5 μg/L; 10 μg/L; 20 μg/L). We observed changes in the expression of a number of genes involved in the Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) metabolism in the liver and brain, as well as altered levels of endocannabinoids and endocannabinoid-like mediators. These changes were associated with greater presence of hepatic lipid vacuoles, following exposure to the highest concentration of BPA (20 μg/L) tested, although there were no changes in food intake and in the expression of the molecular markers for appetite. The overall results support the hypothesis that exposure to BPA induced changes in the central and hepatic ECS system of adult female zebrafish causing the increase of the area covered by lipids in the liver at the highest concentration tested, but not via food intake.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
23
|
Granby K, Rainieri S, Rasmussen RR, Kotterman MJJ, Sloth JJ, Cederberg TL, Barranco A, Marques A, Larsen BK. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). ENVIRONMENTAL RESEARCH 2018; 164:430-443. [PMID: 29573718 DOI: 10.1016/j.envres.2018.02.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
When microplastics pollute fish habitats, it may be ingested by fish, thereby contaminating fish with sorbed contaminants. The present study investigates how combinations of halogenated contaminants and microplastics associated with feed are able to alter toxicokinetics in European seabass and affect the fish. Microplastic particles (2%) were added to the feed either with sorbed contaminants or as a mixture of clean microplastics and chemical contaminants, and compared to feed containing contaminants without microplastics. For the contaminated microplastic diet, the accumulation of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in fish was significantly higher, increasing up to 40 days of accumulation and then reversing to values comparable to the other diets at the end of accumulation. The significant gene expression results of liver (cyp1a, il1β, gstα) after 40 days of exposure indicate that microplastics might indeed exacerbate the toxic effects (liver metabolism, immune system, oxidative stress) of some chemical contaminants sorbed to microplastics. Seabass quickly metabolised BDE99 to BDE47 by debromination, probably mediated by deiodinase enzymes, and unlike other contaminants, this metabolism was unaffected by the presence of microplastics. For the other PCBs and BFRs, the elimination coefficients were significantly lower in fish fed the diet with contaminants sorbed to microplastic compared to the other diets. The results indicate that microplastics affects liver detoxification and lipid distribution, both of which affect the concentration of contaminants.
Collapse
Affiliation(s)
- Kit Granby
- Technical University of Denmark (DTU), National Food Institute, Kemitorvet, 2800 Lyngby, Denmark.
| | - Sandra Rainieri
- AZTI, Food Research Division, Astondo bidea 609, 48160 Derio, Spain
| | - Rie Romme Rasmussen
- Technical University of Denmark (DTU), National Food Institute, Kemitorvet, 2800 Lyngby, Denmark
| | - Michiel J J Kotterman
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University and Research Center, Haringkade 1, 1976 CP IJmuiden, The Netherlands
| | - Jens Jørgen Sloth
- Technical University of Denmark (DTU), National Food Institute, Kemitorvet, 2800 Lyngby, Denmark
| | - Tommy Licht Cederberg
- Technical University of Denmark (DTU), National Food Institute, Kemitorvet, 2800 Lyngby, Denmark
| | - Alex Barranco
- AZTI, Food Research Division, Astondo bidea 609, 48160 Derio, Spain
| | - António Marques
- Portuguese Institute for the Sea and Atmosphere (IPMA), Division of Aquaculture and Upgrading, Avenida de Brasilia, 1449-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Bodil Katrine Larsen
- Technical University of Denmark (DTU), National Institute of Aquatic Resources, Section for Aquaculture, Niels Juelsvej 30, 9850 Hirtshals, Denmark
| |
Collapse
|
24
|
Maradonna F, Carnevali O. Lipid Metabolism Alteration by Endocrine Disruptors in Animal Models: An Overview. Front Endocrinol (Lausanne) 2018; 9:654. [PMID: 30467492 PMCID: PMC6236061 DOI: 10.3389/fendo.2018.00654] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023] Open
Abstract
Exposure to potential Endocrine Disrupting Chemicals (EDCs) pose a documented risk to both wildlife and human health. Many studies so far described declining sperm counts, genital malformations, early puberty onset, highlighting the negative impact on reproduction caused by the exposure to many anthropogenic chemicals. In the last years, increasing evidence suggested that these compounds, other than altering reproduction, affect metabolism and induce the onset of obesity and metabolic disorders. According to the "environmental obesogens" hypothesis, evidence exists that exposure to potential EDCs during critical periods when adipocytes are differentiating, and organs are developing, can induce diseases that manifest later in the life. This review summarizes the effects occurring at the hepatic level in different animal models, describing morphological alterations and changes of molecular pathways elicited by the toxicant exposure. Results currently available demonstrated that these chemicals impair normal metabolic processes via interaction with members of the nuclear receptor superfamily, including steroid hormone receptors, thyroid hormone receptors, retinoid X receptors, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptors. In addition, novel results revealed that EDC exposure can either affect circadian rhythms as well as up-regulate the expression of signals belonging to the endocannabinoid system, in both cases leading to a remarkable increase of lipid accumulation. These results warrant further research and increase the interest toward the identification of new mechanisms for EDC metabolic alterations. The last part of this review article condenses recent evidences on the ability of potential EDCs to cause "transgenerational effects" by a single prenatal or early life exposure. On this regard, there is compelling evidence that epigenetic modifications link developmental environmental insults to adult disease susceptibility. This review will contribute to summarize the mechanisms underlying the insurgence of EDC-induced metabolic alterations as well as to build integrated strategies for their better management. In fact, despite the large number of results obtained so far, there is still a great demand for the development of frameworks that can integrate mechanistic and toxicological/epidemiological observations. This would increase legal and governmental institution awareness on this critical environmental issue responsible for negative consequences in both wild species and human health.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- *Correspondence: Francesca Maradonna
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- Oliana Carnevali
| |
Collapse
|
25
|
Zare A, Henry D, Chua G, Gordon P, Habibi HR. Differential Hepatic Gene Expression Profile of Male Fathead Minnows Exposed to Daily Varying Dose of Environmental Contaminants Individually and in Mixture. Front Endocrinol (Lausanne) 2018; 9:749. [PMID: 30619083 PMCID: PMC6295643 DOI: 10.3389/fendo.2018.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants are known to impair reproduction, metabolism and development in wild life and humans. To investigate the mechanisms underlying adverse effects of contaminants, fathead minnows were exposed to a number of endocrine disruptive chemicals (EDCs) including Nonylphenol (NP), bisphenol-A (BPA), Di(2-ethylhexyl) phthalate (DEHP), and a mixture of the three chemicals for 21 days, followed by determination of the liver transcriptome by expression microarrays. Pathway analysis revealed a distinct mode of action for the individual chemicals and their mixture. The results showed expression changes in over 980 genes in response to exposure to these EDC contaminants individually and in mixture. Ingenuity Pathway core and toxicity analysis were used to identify the biological processes, pathways and the top regulators affected by these compounds. A number of canonical pathways were significantly altered, including cell cycle & proliferation, lipid metabolism, inflammatory, innate immune response, stress response, and drug metabolism. We identified 18 genes that were expressed in all individual and mixed treatments. Relevant candidate genes identified from expression microarray data were verified using quantitative PCR. We were also able to identify specific genes affected by NP, BPA, and DEHP individually, but were also affected by exposure to the mixture of the contaminants. Overall the results of this study provide novel information on the adverse health impact of contaminants tested based on pathway analysis of transcriptome data. Furthermore, the results identify a number of new biomarkers that can potentially be used for screening environmental contaminants.
Collapse
Affiliation(s)
- Ava Zare
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Paul Gordon
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
26
|
Renaud L, Silveira WAD, Hazard ES, Simpson J, Falcinelli S, Chung D, Carnevali O, Hardiman G. The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome. Genes (Basel) 2017; 8:genes8100269. [PMID: 29027980 PMCID: PMC5664119 DOI: 10.3390/genes8100269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer.
Collapse
Affiliation(s)
- Ludivine Renaud
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Willian A da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - E Starr Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Library Science and Informatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Jonathan Simpson
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Silvia Falcinelli
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Gary Hardiman
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Department of Medicine, University of California, La Jolla, CA 92093, USA.
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| |
Collapse
|
27
|
Miccoli A, Maradonna F, De Felice A, Caputo Barucchi V, Estonba A, Genangeli M, Vittori S, Leonori I, Carnevali O. Detection of endocrine disrupting chemicals and evidence of their effects on the HPG axis of the European anchovy Engraulis encrasicolus. MARINE ENVIRONMENTAL RESEARCH 2017; 127:137-147. [PMID: 28411869 DOI: 10.1016/j.marenvres.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Natural/synthetic Endocrine Disrupting Chemicals (EDCs) may display estrogenic activity and a lower potency than 17β-estradiol. Nonetheless, their concentrations and additive effects can affect the endocrine system and reproductive processes related to the Hypothalamic-Pituitary-Gonadal (HPG) axis. Because of their persistence in both the environment and biological systems, they ultimately target multi-level predators, including humans. We detected presence and effects of xenobiotics on wild anchovy Engraulis encrasicolus in the Western Adriatic Sea. Twenty-one PCBs and five organochlorines were detected on the order of ng g-1; vitellogenin, vitellogenin receptor and genes encoding for the zona radiata proteins were evaluated in gonad and/or liver and found transcribed in male specimens; in addition, intersex was histologically identified in the 13% of testis. Our results have developed the understanding of the European anchovy's reproductive toxicological risk and our approach could assist the comprehension of the complex dynamics of commercially relevant Teleost species.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy; CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Andrea De Felice
- CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Vincenzo Caputo Barucchi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.
| | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Iole Leonori
- CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
28
|
Olivares-Rubio HF, Vega-López A. Fatty acid metabolism in fish species as a biomarker for environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:297-312. [PMID: 27453357 DOI: 10.1016/j.envpol.2016.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| |
Collapse
|
29
|
Maradonna F, Nozzi V, Santangeli S, Traversi I, Gallo P, Fattore E, Mita DG, Mandich A, Carnevali O. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:257-264. [PMID: 26382854 DOI: 10.1016/j.aquatox.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes encoding cyclooxygenase 2 (cox2) and 5-lipoxygenase (5 lox), the products of which are involved in the inflammatory response, transcriptions were significantly upregulated in NP and BPA fish, whereas they were unchanged in t-OP specimens. The present findings suggest that dietary xenobiotic contamination can give rise to metabolic disorders also in fish and highlight the potential for their vertical transfer through the trophic levels and ultimately to humans.
Collapse
Affiliation(s)
- F Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - V Nozzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - S Santangeli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - I Traversi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, 16132 Genova, Italy
| | - P Gallo
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Napoli, Italy
| | - E Fattore
- Dipartimento Ambiente e Salute, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - D G Mita
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - A Mandich
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, 16132 Genova, Italy
| | - O Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|