1
|
Wang J, Shangguan Y, Long F, Guo Y, Wang H, Chen L. Embryonic exposure to prednisone induces bone developmental toxicity in zebrafish: Characteristics and molecular mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137996. [PMID: 40122004 DOI: 10.1016/j.jhazmat.2025.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
As a synthetic glucocorticoid, prednisone has been widely used in autoimmune diseases, recurrent abortion and asthma during pregnancy. Although studies suggested that glucocorticoid exposure during pregnancy have developmental toxicity, systematic research on the characteristics of the developmental toxicity of prednisone is lacking. This study intends to construct embryonic prednisone exposure (EPE) model to observe its bone developmental toxicity characteristics of prednisone and explore the mechanism. The results showed that EPE can shortened body and head length, reduced eye and head area, decreased operculum mineralization area, reduced mineralized vertebrae number, shortened ceratohyal and palatoquadrate cartilage length, and decreased expression of key osteogenic differentiation and cartilage development genes. The toxicity to osteogenesis is more severe than chondrogenesis. The toxicity caused by exposure in the middle and terminal stages of embryogenesis is more serious and shows a concentration-effect relationship. We confirmed that Gr/Hdac6 signaling activation mediates prednisone-induced inhibition of osteoblast differentiation by epigenetically regulating the Postnb/Wnt/β-catenin signaling pathway. The results of this study systematically demonstrate the characteristics of prednisone-induced systemic, bone, and cartilage developmental toxicity, and clarify the epigenetic mechanism of its osteogenic developmental toxicity. This provides theoretical and experimental evidence for the safe use of prednisone during pregnancy and the determination of early monitoring targets for bone developmental toxicity.
Collapse
Affiliation(s)
- Jiaqi Wang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Fei Long
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
3
|
Hu J, Wang WX. Cadmium impacts on calcium mineralization of zebrafish skeletal development and behavioral impairment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107033. [PMID: 39084117 DOI: 10.1016/j.aquatox.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.
Collapse
Affiliation(s)
- Jingyi Hu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Liu L, Hong Y, Ma C, Zhang F, Li Q, Li B, He H, Zhu J, Wang H, Chen L. Circular RNA Gtdc1 Protects Against Offspring Osteoarthritis Induced by Prenatal Prednisone Exposure by Regulating SRSF1-Fn1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307442. [PMID: 38520084 PMCID: PMC11132075 DOI: 10.1002/advs.202307442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFβ pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Chi Ma
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fan Zhang
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qingxian Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bin Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hangyuan He
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiayong Zhu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacologyWuhan University School of Basic Medical SciencesWuhan430071China
| | - Liaobin Chen
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
5
|
Bergés-Tiznado ME, Bojórquez-Sánchez C, Acosta-Lizárraga LG, Zamora-García OG, Márquez-Farías JF, Páez-Osuna F. Tissue dynamics of potential toxic elements in the Pacific hake (Merluccius productus): distribution and the public health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77945-77957. [PMID: 35688982 DOI: 10.1007/s11356-022-21325-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish the distribution of As, Cd, Pb, Cu, and Zn in the main tissues (muscle, liver, gonads, and gills) of the Pacific hake (Merluccius productus) from the northern Gulf of California to establish baseline bioavailability levels in the northern stock. The results for Pb and Cd were the lowest in the studied tissues (Pb < 0.005 mg kg-1 in the liver and gonads and 1.43 mg kg-1 for Cd in the liver), followed by levels of Cu and As (muscle > liver > gonads > gills) and Zn with the most abundant levels in all the tissues. The sex of the organisms was not a factor that influenced the bioaccumulation and distribution of the potential toxic elements (PTEs) nor total length, except for As in gills and Cd in muscle and the liver. Important interactions among Zn and non-essential elements were established. The Pacific hake intake of PTEs was probably through the diet via bioaccumulation of the elements in their prey and less by pollution of the water column. In the muscle, a major distribution and storage of As, Zn, and Pb were observed, but in the liver, higher loads were from Cd and Cu. The maximum tolerable weekly intake must be very high to be at health risk for the essential elements and Cd. However, the population might be at risk for Pb and As consumption if more than 124 g of M. productus in adults and 35 g in children are consumed per week. Further investigations are required to understand the dynamics of PTEs in M. productus as it could be proposed as a biomonitor species.
Collapse
Affiliation(s)
- Magdalena Elizabeth Bergés-Tiznado
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México.
| | - Carolina Bojórquez-Sánchez
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México
| | - Linda Gilary Acosta-Lizárraga
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán-Higueras km. 3, 82199, Mazatlán, Sinaloa, México
| | - Oscar Guillermo Zamora-García
- Servicios Integrales de Recursos Biológicos, Acuáticos y Ambientales, Genaro Estrada 406 Centro, 82000, Mazatlán, Sinaloa, México
| | - Juan Fernando Márquez-Farías
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Centro, 82000, Mazatlán, Sinaloa, México
| | - Federico Páez-Osuna
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, 82000, Mazatlán, Sinaloa, México
- El Colegio de Sinaloa, Antonio Rosales 435 Pte, Culiacán, Sinaloa, México
| |
Collapse
|
6
|
Xu Y, Zhao H, Wang Z, Gao H, Liu J, Li K, Song Z, Yuan C, Lan X, Pan C, Zhang S. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging. CHEMOSPHERE 2022; 291:132802. [PMID: 34752834 DOI: 10.1016/j.chemosphere.2021.132802] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a worldwide environmental pollutant that postures serious threats to humans and ecosystems. Over the years, its adverse effects on the central nervous system (CNS) have been concerned, whereas the underlying cellular/molecular mechanisms remain unclear. In this study, taking advantages of zebrafish model in high-throughput imaging and behavioral tests, we have explored the potential developmental neurotoxicity of Cd at environmentally relevant levels, from the perspectives of neurobehavior and neuroimaging. Briefly, Cd2+ exposure resulted in a general impairment of zebrafish early development. Zebrafish neurobehavioral patterns including locomotion and reactivity to environmental signals were significantly perturbed upon Cd2+ exposure. Importantly, a combination of in vivo two-photon neuroimaging, flow cytometry and gene expression analyses revealed notable neurodevelopmental disorders as well as neuroimmune responses induced by Cd2+ exposure. Both cell-cycle arrest and apoptosis contributed jointly to a significant decrease of neuronal density in zebrafish larvae exposed to Cd2+. The dramatic morphological alterations of microglia from multi-branched to amoeboid, the microgliosis, as well as the modulation of gene expression profiles demonstrated a strong activation of microglia and neuroinflammation triggered by environmental levels of Cd2+. Together, our study points to the developmental toxicity of Cd in inducing CNS impairment and neuroinflammation thereby providing visualized etiological evidence of this heavy metal induced neurodevelopmental disorders. It's tempting to speculate that this research model might represent a promising tool not only for understanding the molecular mechanisms of Cd-induced neurotoxicity, but also for developing pharmacotherapies to mitigate the neurological damage resulting from exposure to Cd, and other neurotoxicants.
Collapse
Affiliation(s)
- Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hao Gao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Junru Liu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Cong Yuan
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Huang W, Wu T, Au WW, Wu K. Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117541. [PMID: 34118758 DOI: 10.1016/j.envpol.2021.117541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Craniofacial skeletal anomalies are among the most common structural birth defects around the world. Various studies using human populations and experimental animals have shown that genetic and environmental factors play significant roles in the causation and progression of these anomalies. Environmental factors, such as teratogens and toxin mixtures, induce craniofacial anomalies are gaining heightened attention. Among experimental investigations, the use of the zebrafish (Danio rerio) has been increasing. A major reason for the increased use is that the zebrafish boast a simple craniofacial structure, and facial morphogenesis is readily observed due to external fertilization and transparent embryo, making it a valuable platform to screen and identify environmental factors involved in the etiology of craniofacial skeletal malformation. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements, nanoparticles, persistent organic pollutants, pesticides and pharmaceutical formulations on craniofacial skeletal development in zebrafish embryos. The collected data provide a better understanding for induction of craniofacial skeletal anomalies and for development of better prevention strategies.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Techonology, 540142, Tirgu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|