1
|
Turkez H, Alak G, Ozgeris FB, Cilingir Yeltekin A, Ucar A, Parlak V, Şuţan NA, Atamanalp M. Borax attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/ROS balance in acrylamide-induced neurotoxicity in rainbow trout. Drug Chem Toxicol 2025; 48:27-36. [PMID: 38938109 DOI: 10.1080/01480545.2024.2370916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Acrylamide (ACR) can have adverse environmental effects because of its multiple applications. Relevant scientific literatures of the existence of ACR residues in foods following processing steps have raised concern in the biochemistry, chemistry and safety of this vinyl substance. The interest has focused on the hepatotoxicity of ACR in animals and humans and on the ACR content mitigation and its detoxification. Borax (BX), as a naturally occurring antioxidant featured boron compound, was selected in this investigation to assess its possible neuro-protective potential against ACR-induced neurotoxicity. Nrf2 axis signaling pathways and detoxification response to oxidative stress after exposure to ACR in brains of rainbow trout, and the effect of BX application on reducing ACR-induced neurotoxicity were investigated. Rainbow trout were acutely exposed to ACR (12.5 mg/L) alone or simultaneously treated with BX (0.75 mg/L) during 96h. The exposed fish were sampled at 48th and 96th and oxidative stress response endpoints, 8-OHdG, Nrf2, TNF-α, caspase-3, in addition to IL-6 activities and the levels of AChE and BDNF in brain tissues of rainbow trout (Oncorhynchus mykiss) were evaluated. Samples showed decreases in the levels of ACR-mediated biomarkers used to assess neural toxicity (SOD, CAT, GPx, AChE, BDNF, GSH), increased levels of MDA, MPO, DNA damage and apoptosis. ACR disrupted the Nrf2 pathway, and induced neurotoxicity. Inhibited activities' expressions under simultaneous administration experiments, revealed the protective effects of BX against ACR-induced toxicity damage. The obtained data allow the outline of early multi-parameter signaling pathways in rainbow trout.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seaafod Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | | | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | | | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Türkez H, Özdemir Tozlu Ö, Yıldız E, Saraçoğlu M, Baba C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Topkara KÇ, Çadırcı K. Assessment of Subacute Toxicity of Ulexite in Rats: Behavioral, Hematological, and Biochemical Insights. Biol Trace Elem Res 2024:10.1007/s12011-024-04489-7. [PMID: 39666170 DOI: 10.1007/s12011-024-04489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Ulexite (UX), a naturally occurring borate mineral, has gained interest for its diverse industrial applications, yet its toxicological profile remains inadequately characterized. This study aimed to evaluate the subacute toxicity of UX in rats, focusing on behavioral, hematological, and biochemical parameters. Rats were administered UX via gavage at doses of 10, 30, and 300 mg/kg for 7 days. No mortality or significant signs of toxicity were observed, although body weight measurements indicated a notable reduction in the UX-treated groups compared to controls. Behavioral assessments demonstrated increased exploratory activity in the 10 and 300 mg/kg UX treated groups, suggesting low anxiety levels. Likewise, hematological analysis revealed that 30 and 300 mg/kg UX led a significant (P < 0.001) increase in hematocrit and a decrease in mean corpuscular hemoglobin concentration (P < 0.001), indicating potential changes in erythropoiesis. Additionally, serum biochemistry showed elevated aspartate aminotransferase (P < 0.05), lactate dehydrogenase (P < 0.001), and uric acid levels (P < 0.01), suggesting liver stress. Histopathological examinations indicated dose-dependent alterations, with mild hepatocellular degeneration and neuronal changes observed at the highest dose. Also, MN levels in the blood of rats exposed to 10 and 30 mg/kg UX showed no significant differences. These results suggest that UX is relatively safe at lower doses, though higher exposures may pose health risks. Further research is warranted to elucidate the mechanisms underlying UX-induced effects and to evaluate its safety for therapeutic and occupational applications.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kübra Çelik Topkara
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
3
|
Díaz-Rosas G, Cruz-Hernández M, Ortega-Camarillo C, Pedraza-Galeana A, López-Torres A, Contreras-Ramos A. The sodium borate relieves the hypertrophic damage induced during pregnancy, it improves contractibility, reduces oxidative stress and stimulates cell proliferation. J Trace Elem Med Biol 2023; 80:127269. [PMID: 37506468 DOI: 10.1016/j.jtemb.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Fetal and postnatal hypertrophy develop in response to such different exposures or illnesses the mother suffers during gestation as anti-infectious and physical agents, obesity, hypertension, diabetes, and even advanced maternal age. This gives rise to high comorbidities in the newborn; therefore, looking for alternatives that contribute to cardiac homeostasis is quite necessary to inhibit the overgrowth of myocytes. Boron-derivative compounds could play a key role in exerting a repairing effect on chronic cardiac damage induced during gestation. METHODOLOGY The cardiotoxic effect of 6.4, 12 and 100 mg/kg of sodium tetraborate administered by oral delivery route to healthy pregnant mice was assessed. After that, the use of the chemical compound was tested in the treatment of pregnant mice previously subjected to isoproterenol (fetal hypertrophy model) on the fifth day post coitus. Prior to the sacrifice of the pups of mice an electrocardiography (ECG) was done. Morphological and histological changes of heart were assessed in newborn pups. As a damage marker, the concentration of p38 nitrogen-activated protein kinases were evaluated by using Western Blot and the levels of malondialdehyde (MDA) as well as glutathione antioxidants (GSH) and glutathione peroxidase (GPx) were tested by spectrometry. Moreover, the mRNA expression for early response genes (c-jun, c-fos y c-myc), late response (GATA-4, Mef2c, NFAT) and heart damage (ANP and BNP) was measured by qPCR real time. RESULTS The supply of 6,4 and 12 mg/kg-sodium tetraborate favored ventricular remodeling with histological alterations. By comparison, 100 mg/kg of sodium tetraborate administered during the fetal stage did not alter neither the cardiac morphology of six-week old pups nor the p38/P-p38MAPK ratio remained the same and no oxidative stress was observed. When pregnant females treated with isoproterenol were treated with 100 mg/kg sodium tetraborate during the fetal stage, an improvement in contractility was detected in the pups with an actual reduction in myocardial fibrosis and oxidative stress, but cardiac mass increased. In addition, the expression levels of c-jun, c-myc, GATA-4, MEF2c and ANP mRNA declined in comparison with CTR. However, the hypertrophic damage mechanism was sustained by c-fos, NFAT and BNP expressions. CONCLUSIONS The set of results achieved suggests that high concentrations of sodium tetraborate have no cardiotoxic effects. Furthermore, sodium tetraborate mitigates hypertrophy induced during pregnancy, thereby improving contractibility, reducing oxidative stress and stimulating cell proliferation. Therefore, sodium tetraborate could be an excellent prophylactic treatment administered by delivery oral route during pregnancy when there is a risk of developing fetal left ventricular hypertrophy (LVH).
Collapse
Affiliation(s)
- Guadalupe Díaz-Rosas
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - Mayra Cruz-Hernández
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico; Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc CP, 06720 CDMX, Mexico
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc CP, 06720 CDMX, Mexico
| | - Agustín Pedraza-Galeana
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - Adolfo López-Torres
- Center for Scientific Research, Institute of Applied Chemistry, University of Papaloapan, Central Circuit No. 200, Col. Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Alejandra Contreras-Ramos
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico.
| |
Collapse
|
4
|
Alak G, Ucar A, Parlak V, Turkez H, Kocaman EM, Atamanalp M, Abd El-Aty AM. Effect of coating with chitosan enriched with different borates on the shelf life of fish fillet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4340-4350. [PMID: 36782090 DOI: 10.1002/jsfa.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND In this study, the effects of biofilm coatings obtained by immobilization of different borates - namely borax (BX), colemanite (COL), and ulexite (UX) - with chitosan (Ch) on the shelf life of rainbow trout fillets were investigated. The immobilization and characterization of borates in Ch were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. In determining the shelf life of fillets that were covered by immersion and stored for 15 days, microbiological (total aerobic mesophilic, psychrotrophic, lactic acid, Pseudomonas, and Enterobacteriaceae bacteria counts) and chemical analyses (total volatile basic nitrogen, thiobarbituric acid reactive substance, and pH levels) were performed at 3 day periodic intervals. In addition, the biodegradation of borates was determined using inductively coupled plasma mass spectrometry in biofilm-coated fillets on the 1st, 8th, and 15th storage days. RESULTS The microbial results of the coatings enriched with borates (BX, COL, and UX) at different levels (0, 0.03, and 0.06 mg L-1 ) (due to the immobilization with Ch) show the shelf life was extended by 3-6 days in all of the treatment groups compared with the control. CONCLUSION It was concluded that BX, COL, and UX coatings enriched by immobilization with Ch increase shelf life and improve fillet quality. In addition, the enrichment of BX, COL, and UX with Ch showed explicit natural protective effects. This study demonstrates that Ch-enriched coatings of BX, COL, and UX can be used as natural bioactive nanocarriers to provide bioactive food ingredients in the seafood processing industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Toxic Effects of Sodium Lauryl Sulfate on Antioxidant Defense System and DNA Damage in Fish Primary Hepatocyte Cultures. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abstract
Synthetic detergents which have a major role in environmental pollution accumulate over time and reach levels that harm nature. The surfactants which are abundantly used as cleaning components are discharged into the Van Lake with the sewage water. These chemicals accumulating in the lake may reach a level that could affect the only fish species of the lake, the Van fish. This study aimed to determine the antioxidant levels of Van fish hepatocyte cell culture medium treated with sodium lauryl sulphate (SLS) and to assess the DNA damage. The effect of SLS was assessed by its dose (1x10−5, 1x10-6, 1x10−7 M) and treatment time (24 h, 48 h). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and DNA damage (8-OHdG) were determined in the SLS hepatocyte culture. SOD and GSH-Px were higher on 24 h and 48 h compared to the control group. A significant increase was observed in CAT level in the first 24 h, especially in 1x10−6 and 1x10-5 M concentration. At 48 h, it was observed that the CAT level decreased significantly as the concentration increased. It was determined that MDA and 8-OHdG levels increased depending on concentration and time. In conclusion, different concentrations of SLS affected antioxidant levels in the primary hepatocyte culture of Van Fish and were found to cause an increase in the levels of MDA and 8-OHdG.
Collapse
|
6
|
Turkez H, Arslan ME, Tatar A, Mardinoglu A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem Int 2021; 149:105137. [PMID: 34293392 DOI: 10.1016/j.neuint.2021.105137] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary malignant astrocytoma correlated with poor patient survival. There are no curative treatments for GB, and it becomes resistant to chemotherapy, radiation therapy, and immunotherapy. Resistance in GB cells is closely related to their states of redox imbalance, and the role of reactive oxygen species and its impact on cancer cell survival is still far from elucidation. Boron-containing compounds, especially boric acid (BA) and borax (BX) exhibited interesting biological effects involving antibacterial, antiviral, anti-cancerogenic, anti-mutagenic, anti-inflammatory as well as anti-oxidative features. Recent studies indicated that certain boron compounds could be cytotoxic on human GB. Nevertheless, there is gap of knowledge in the literature on exploring the underlying mechanisms of anti-GB action by boron compounds. Here, we identified and compared the potential anti-GB effect of both BA and BX, and revealed their underlying anti-GB mechanism. We performed cell viability, oxidative alterations, oxidative DNA damage potential assays, and explored the inflammatory responses and gene expression changes by real-time PCR using U-87MG cells. We found that BA and BX led to a remarkable reduction in U-87MG cell viability in a concentration-dependent manner. We also found that boron compounds increased the total oxidative status and MDA levels along with the SOD and CAT enzyme activities and decreased total antioxidant capacity and GSH levels in U-87MG cells without inducing DNA damage. The cytokine levels of cancer cells were also altered. We verified the selectivity of the compounds using a normal cell line, HaCaT and found an exact opposite condition after treating HaCaT cells with BA and BX. BA applications were more effective than BX on U-87MG cell line in terms of increasing MDA levels, SOD and CAT enzyme activities, and decreasing Interleukin-1α, Interleukin-6 and Tumor necrosis factor- α (TNF- α) levels. We finally observed that anticancer effect of BA and BX were associated with the BRAF/MAPK, PTEN and PI3K/AKT signaling pathways in respect of downregulatory manner. Especially, BA application was found more favorable because of its inhibitory effect on PIK3CA, PIK3R1, PTEN and RAF1 genes. In conclusion, our analysis indicated that boron compounds may be safe and promising for effective treatment of GB.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Ataturk University, 25240; Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
7
|
Öz M, Tatil T, Dikel S. Effects of boric acid on the growth performance and nutritional content of rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2021; 272:129895. [PMID: 35534968 DOI: 10.1016/j.chemosphere.2021.129895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 06/14/2023]
Abstract
In this study, boric acid was added to the rainbow trout (Oncorhynchus mykiss) feed at ratios of 0.00%, 0.01%, 0.05%, 0.10%, and 0.20%. The feeding period of this study continued for 90 days. The effect of boric acid on the growth parameters and nutritional composition of rainbow trout were investigated. In this research, effects on live weight gain (LWG), amount of feed intake, feed conversion rate (FCR), protein efficiency rate (PER), specific growth rate (SGR), survival rate, economic conversion rate (ECR), and economic profit index (EPI) were evaluated as growth parameters. As for nutritional contents, the total crude protein, lipid, raw ash, and humidity ratios were calculated. Rainbow trout with an initial weight of 92.04 g reached up to 195.05 ± 1.69 g, 202.69 ± 1.94 g, 217.53 ± 2.84 g, 195.25 ± 2.18 g, and 181.20 ± 1.89 g, respectively in the different levels of boric acid at the end of the trial period. The best growth performance was obtained in the group with 0.05% boric acid added, while the lowest growth performance was observed in the group with 0.20% boric acid added. It was concluded based on the results of this study that the amount of boric acid up to 0.05% in the fish feed positively affected the growth parameters and the addition of higher amounts had either no benefit or negative effects on the growth performance of rainbow trout. Furthermore, boric acid in feed affected the nutritional composition of fish meat.
Collapse
Affiliation(s)
- Mustafa Öz
- Department of Fisheries and Diseases, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey.
| | - Tuğçe Tatil
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Suat Dikel
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
8
|
Alak G, Ucar A, Parlak V, Yeltekin AÇ, Özgeriş FB, Atamanalp M, Türkez H. Antioxidant Potential of Ulexite in Zebrafish Brain: Assessment of Oxidative DNA Damage, Apoptosis, and Response of Antioxidant Defense System. Biol Trace Elem Res 2021; 199:1092-1099. [PMID: 32557103 DOI: 10.1007/s12011-020-02231-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
In recent years, because of its significant biological roles, the usage of boron has been started in animal feeding. In this research, it was aimed to investigate the ulexite's action mechanism on the zebrafish brain with an evaluation of the oxidative parameters. The adult zebrafish were exposed to four ulexite doses (5, 10, 20, and 40 mg/l) in a static test apparatus for 96 h. For assessing the oxidative responses, multiple biochemical analyses were performed in brain tissues. The results indicated the supporting potential of low ulexite doses on the antioxidant system (< 40 mg/l) and that low-dose ulexite does not lead to oxidative stress in the zebrafish brain. Again, our results showed that low ulexite concentrations did not cause DNA damage or apoptosis. As a final result, in aquatic environments, ulexite (a boron compound) can be used in a safe manner, but it would be useful at higher concentrations to consider the damages of the cells that are probable to develop because of the oxidative stress.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, TR-25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, TR-25240, Erzurum, Turkey
| |
Collapse
|
9
|
Roque-Jorge J, Hernández-Gutiérrez S, Díaz-Rosas G, García-Chequer AJ, López-Torres A, Contreras-Ramos A. Data on sodium tetraborate as a modulation of hypertrophic intracellular signals. Data Brief 2021; 35:106889. [PMID: 33850976 PMCID: PMC8022151 DOI: 10.1016/j.dib.2021.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
The present work benefits the use of sodium tetraborate to prevent and treat hypertrophic cardiac. The data obtained from the work could serve as a reference point to compare with data obtained in vivo studies with cardiac damage. This research will be an advantage for future researches to stimulate the ones focused on developing food supplements to prevent heart diseases such as cardiac hypertrophic. This article also indicates the data on the optimal concentration of isoproterenol as an inducer of hypertrophy in cardiomyocytes. Also, data of the cytotoxic effect of sodium tetraborate on normal cardiomyocytes is revealed. Finally, data of viability, cell size, proliferation nuclear antigen (PCNA) and apoptosis is shown. The expression of transcription factors linked to hypertrophy such as GATA-4, MEF2c, NFAT, CDk9, and myogenin was also quantified by immunofluorescence. The mRNA expression of adrenergic receptors (alpha and beta), AKT1 and Erk1 / 2 and genes of early response to hypertrophy (c-myc, c-fos, c-jun) are also shown as Cts of RT-qPCR. GAPDH and 18 s were used as housekeeping genes.
Collapse
Affiliation(s)
| | | | - G Díaz-Rosas
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children´s Hospital of Mexico Federico Gomez (HIMFG), CP 06720 Mexico City, Mexico
| | - A J García-Chequer
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children´s Hospital of Mexico Federico Gomez (HIMFG), CP 06720 Mexico City, Mexico
| | - A López-Torres
- School of Medicine, Universidad Panamericana, Mexico City, Mexico
| | - A Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children´s Hospital of Mexico Federico Gomez (HIMFG), CP 06720 Mexico City, Mexico
| |
Collapse
|
10
|
Tao D, Wang Y, Liu J, Chen R, Qi M, Xu S. Mechanism of CuSO 4 cytotoxicity in goat erythrocytes after high-level in vitro exposure to isotonic media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111730. [PMID: 33396061 DOI: 10.1016/j.ecoenv.2020.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is a common environmental pollutant in nature. Cu-poisoning can cause liver damage and erythrocytes hemolysis. To evaluate the effect of CuSO4 poisoning on the morphological and functional characteristics of goat red blood cells. Five 10-14-month-old goats were selected for jugular vein blood sampling to obtain erythrocytes, and then the erythrocytes were processed with different concentrations (0, 10, 20, 30, 40 and 50 μmol/L) of CuSO4 for 48 h, and 40 μmol/L doses CuSO4 incubated for different time (12, 24, 36, 48 and 60 h) to process erythrocytes. We observed the changes in erythrocyte morphology through scanning electron microscopy, and detected the antioxidant function and activities of three ATPases. Additionally, biological properties were examined from the perspectives of phospholipids and membrane protein components, permeability fragility, and fluidity in erythrocytes. We found that after CuSO4 treatment, the antioxidant capacity of erythrocytes decreased, which was manifested as increased MDA content and decreased CuZn-SOD and GSH-Px activities (p < 0.05). In addition, we also found that erythrocyte fluidity decreased, osmotic fragility increased, membrane phospholipid percentage and protein composition changes abnormally, and Na+/K+-ATPase, Mg2+-ATPase and Ca2+-ATPase activities decreased (p < 0.05). From the results, it can be concluded that CuSO4 exposure causes hemolysis of goat erythrocytes through oxidative stress to the structure and function of erythrocytes, showing a dose-time effect.
Collapse
Affiliation(s)
- Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Yong Wang
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Junfeng Liu
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Rong Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Shiwen Xu
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China; Key Laboratory of Tarim Animal Husbandry Technology Corps, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China.
| |
Collapse
|
11
|
Lozano-Bilbao E, Lozano G, Jiménez S, Jurado-Ruzafa A, Hardisson A, Rubio C, Weller DG, Paz S, Gutiérrez ÁJ. Ontogenic and seasonal variations of metal content in a small pelagic fish (Trachurus picturatus) in northwestern African waters. MARINE POLLUTION BULLETIN 2020; 156:111251. [PMID: 32510393 DOI: 10.1016/j.marpolbul.2020.111251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Marine organisms are exposed to great changes induced by human beings due, among others, to discharges into the oceans, increasing marine pollution. For this study, 294 specimens of Trachurus picturatus from the Canary Islands were analyzed during a period of 2 years. The concentration of 11 anthropic metals and trace elements was determined in each individual using the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) technique. Statistical analyses were carried out considering the following factors: oceanographic season, maturity of the gonads, size of the specimens, season. Immature specimens had higher concentration in more metals than the mature specimens. This fact may be due to the fact that these specimens require a much higher metabolic rate due to their growth and do not detoxify like mature specimens.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain.
| | - Gonzalo Lozano
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastián Jiménez
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera s/n, 38180 Santa Cruz de Tenerife, Spain
| | - Alba Jurado-Ruzafa
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera s/n, 38180 Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Soraya Paz
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
12
|
Köktürk M, Alak G, Atamanalp M. The effects of n-butanol on oxidative stress and apoptosis in zebra fish (Danio rerio) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108636. [PMID: 31669665 DOI: 10.1016/j.cbpc.2019.108636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
In recent years, n-butanol has growing use in many areas, including the food industry. In this study, acute toxic effects of n-butanol to zebrafish (Danio rerio) larvae by applying different concentrations (10, 50, 250, 500, 750, 1000 and 1250 mg/L) to embryos were evaluated. For this purpose the data of oxidative stress, antioxidant - acetyl cholinesterase enzyme activities, malondialdehyde level and apoptosis were taken into consideration. At the end of the 96 h, antioxidant (Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) and acetylcholinesterase (AChE) enzyme activities were decreased, however lipid peroxidation level, apoptotic cells, and reactive oxygen species increased (p < .05). As a result, it has been observed that high concentrations of n-butanol with its amphiphilic structure causes quite intense toxic effects in zebrafish embryos.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, School of Applied Science, Igdır University, TR-76000 Igdır, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| |
Collapse
|
13
|
Wu L, Wei Y, Zhou WB, Zhang YS, Chen QH, Liu MX, Zhu ZP, Zhou J, Yang LH, Wang HM, Wei GM, Wang S, Tang ZG. Gene expression alterations of human liver cancer cells following borax exposure. Oncol Rep 2019; 42:115-130. [PMID: 31180554 PMCID: PMC6549072 DOI: 10.3892/or.2019.7169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Borax is a boron compound that is becoming widely recognized for its biological effects, including lipid peroxidation, cytotoxicity, genotoxicity, antioxidant activity and potential therapeutic benefits. However, it remains unknown whether exposure of human liver cancer (HepG2) cells to borax affects the gene expression of these cells. HepG2 cells were treated with 4 mM borax for either 2 or 24 h. Gene expression analysis was performed using Affymetrix GeneChip Human Gene 2.0 ST Arrays, which was followed by gene ontology analysis and pathway analysis. The clustering result was validated using reverse transcription-quantitative polymerase chain reaction. A cell proliferation assay was performed using Celigo Image Cytometer Instrumentation. Following this, 2- or 24-h exposure to borax significantly altered the expression level of a number of genes in HepG2 cells, specifically 530 genes (384 upregulated and 146 downregulated) or 1,763 genes (1,044 upregulated and 719 downregulated) compared with the control group, respectively (≥2-fold; P<0.05). Twenty downregulated genes were abundantly expressed in HepG2 cells under normal conditions. Furthermore, the growth of HepG2 cells was inhibited through the downregulation of PRUNE1, NBPF1, PPcaspase-1, UPF2 and MBTPS1 (≥1.5-fold, P<0.05). The dysregulated genes potentially serve important roles in various biological processes, including the inflammation response, stress response, cellular growth, proliferation, apoptosis and tumorigenesis/oncolysis.
Collapse
Affiliation(s)
- Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying Wei
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Wen-Bo Zhou
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - You-Shun Zhang
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - Qin-Hua Chen
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Experiment Center of Medicine, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Ming-Xing Liu
- Department of Pediatrics, YunXi Health for Women And Children, Children's Hospital, Maternal & Child Care and Family Planning Service Centre, Shiyan, Hubei 442600, P.R. China
| | - Zheng-Peng Zhu
- Department of Pathology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Jiao Zhou
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Li-Hua Yang
- Subject Construction Office, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Hong-Mei Wang
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Guang-Min Wei
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - Sheng Wang
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|