1
|
Hao DC, Wang F, Li C, Wang Y, Xue J, Xiao PG. Fungal bioaugmentation enhanced herbicide removal via soil microbial fuel cell: Taking Myrothecium verrucaria and haloxyfop-P as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178012. [PMID: 39657334 DOI: 10.1016/j.scitotenv.2024.178012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Microbial fuel cell (MFC), which produces electricity while removing pollutants, is a green approach of ecological restoration. Whether fungal bioaugmentation could enhance the herbicide removal in MFC has not been fully investigated. This study aims to construct the fungal-augmented MFC device, compare the effects of different types of remediation against soil haloxyfop-P, and explore the mechanisms of xeno-fungusphere MFC in alleviating organic pollution. The Myrothecium verrucaria addition achieved the current density of 15.27 μA/cm2 and power density (PD) of 1.174 μW/cm2, which were much higher than those with indigenous microbes and MFC alone. On day 60, the haloxyfop removal efficiency of 93.7 % was achieved with the M. verrucaria bioaugmentation, and double herbicide further increased the removal efficiency to 97.9 %, along with PD of 9.3 μW/cm2. The M. verrucaria addition significantly changed the correlation pattern between bacterial genera, as well as between dominant genera and herbicide degradation, electrogenesis, edaphic factors and functional abundance. Facing herbicide challenge, the biogeochemical processes of C/N/Fe/Mn/S were reorganized in MFC microbiota, which were also profoundly impacted by bioelectric field and xeno-fungusphere. The MFC degradation of haloxyfop-P followed the second-order kinetics; the fungal addition reduced the gap between the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of herbicide molecules, and reduced the energy barrier for the herbicide transformation. Compared with MFC alone, xeno-fungusphere MFC had a better effect, which can remediate the soil without additional power supply, making it a cost-effective self-sustaining remediation strategy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Fan Wang
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Chengxun Li
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Yaoxuan Wang
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Jiayi Xue
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Barbosa de Sousa A, Rohr P, Silveira HCS. Analysis of mitochondrial DNA copy number variation in Brazilian farmers occupationally exposed to pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2913-2922. [PMID: 37967258 DOI: 10.1080/09603123.2023.2280147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The use of pesticide use has been linked to the higher production of reactive oxygen species, resulting in oxidative stress, which in turn can cause genomic instability. A marker for instability is the copy number variation of the mitochondrial genome (mtDNAcn), which has been found to be altered in diverse human diseases, including tumors. This research aimed to examine the variation of mtDNAcn in individuals occupationally exposed to pesticides. Real-time PCR assays were conducted on 154 individuals (78 exposed and 76 non-exposed). Pesticide-exposed ndividuals exhibited a significant reduction in mtDNAcn (1.11 ± 0.37mtDNAcn/genome) compared to non-exposed individuals (1.30 ± 0.33mtDNAcn/genome; p = 0.001). The multivariate analysis indicated that individuals who reported using haloxyfop and copper sulfate demonstrated an increase (β = 0.200, p = 0.053) and a decrease (β=-0.2, p = 0.021), respectively, in mtDNAcn. In conclusion, our findings suggest that chronic exposure to pesticides results in changes in mtDNAcn.
Collapse
Affiliation(s)
| | - Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, SP, Brazil
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, SP, Brazil
- University of Anhanguera, São Paulo, Brazil
| |
Collapse
|
3
|
Nöth J, Busch W, Tal T, Lai C, Ambekar A, Kießling TR, Scholz S. Analysis of vascular disruption in zebrafish embryos as an endpoint to predict developmental toxicity. Arch Toxicol 2024; 98:537-549. [PMID: 38129683 PMCID: PMC10794345 DOI: 10.1007/s00204-023-03633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Inhibition of angiogenesis is an important mode of action for the teratogenic effect of chemicals and drugs. There is a gap in the availability of simple, experimental screening models for the detection of angiogenesis inhibition. The zebrafish embryo represents an alternative test system which offers the complexity of developmental differentiation of an entire organism while allowing for small-scale and high-throughput screening. Here we present a novel automated imaging-based method to detect the inhibition of angiogenesis in early life stage zebrafish. Video subtraction was used to identify the location and number of functional intersegmental vessels according to the detection of moving blood cells. By exposing embryos to multiple tyrosine kinase inhibitors including SU4312, SU5416, Sorafenib, or PTK787, we confirmed that this method can detect concentration-dependent inhibition of angiogenesis. Parallel assessment of arterial and venal aorta ruled out a potential bias by impaired heart or blood cell development. In contrast, the histone deacetylase inhibitor valproic acid did not affect ISV formation supporting the specificity of the angiogenic effects. The new test method showed higher sensitivity, i.e. lower effect concentrations, relative to a fluorescent reporter gene strain (Tg(KDR:EGFP)) exposed to the same tyrosine kinase inhibitors indicating that functional effects due to altered tubulogenesis or blood transport can be detected before structural changes of the endothelium are visible by fluorescence imaging. Comparison of exposure windows indicated higher specificity for angiogenesis when exposure started at later embryonic stages (24 h post-fertilization). One of the test compounds was showing particularly high specificity for angiogenesis effects (SU4312) and was, therefore, suggested as a model compound for the identification of molecular markers of angiogenic disruption. Our findings establish video imaging in wild-type strains as viable, non-invasive, high-throughput method for the detection of chemical-induced angiogenic disruption in zebrafish embryos.
Collapse
Affiliation(s)
- Julia Nöth
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Chih Lai
- University of St. Thomas, St. Paul, MN, USA
| | - Akhil Ambekar
- University of St. Thomas, St. Paul, MN, USA
- Duke University, A.I. Health Fellow-Associate in Research, Durham, NC, USA
| | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| |
Collapse
|
4
|
Xu W, Yang Y, Tian J, Du X, Ye Y, Liu Z, Li Y, Zhao Y. Haloxyfop-P-methyl induces immunotoxicity and glucose metabolism disorders and affects the Nrf2/ARE pathway mediated antioxidant system in Chiromantes dehaani. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122332. [PMID: 37558200 DOI: 10.1016/j.envpol.2023.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Haloxyfop-P-methyl is used extensively in agricultural production, and its metabolites in soil have potentially toxic effects on aquatic ecosystems. In this study, we explored the toxicity of haloxyfop-P-methyl on Chiromantes dehaani. The results of the 21-day toxicity test showed that haloxyfop-P-methyl decreased the weight gain (WG), specific growth rate (SGR) and hepatosomatic index (HSI). In glucose metabolism, haloxyfop-P-methyl reduced pyruvate, lactate, lactate dehydrogenase and succinate dehydrogenase, but enhanced glucose-6-phosphate dehydrogenase and hexokinase. Furthermore, expression of glucose metabolism-related genes was upregulated. We cloned the full-length CdG6PDH gene, which contains a 1587 bp ORF that encoded a 528 amino acid polypeptide. In antioxidant system, haloxyfop-P-methyl increased glutathione, thioredoxin reductase and thioredoxin peroxidase activities and activated the Nrf2/ARE pathway through upregulation of ERK, JNK, PKC and Nrf2. In immunity, low concentrations haloxyfop-P-methyl, or short-term exposure, upregulated the expression of immune-related genes and enhanced immune-related enzymes activity, while high concentrations or long-term exposure inhibited immune function. In summary, haloxyfop-P-methyl inhibited the growth performance, disrupted glucose metabolism, activated the antioxidant system, and led to immunotoxicity. The results deepen our understanding of the toxicity mechanism of haloxyfop-P-methyl and provide basic biological data for the comprehensive assessment of the risk of haloxyfop-P-methyl to the environment and humans.
Collapse
Affiliation(s)
- Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Dcunha R, Kumari S, Najar MA, Aravind A, Suvarna KS, Hanumappa A, Mutalik SP, Mutalik S, Kalthur SG, Rajanikant GK, Siddiqui S, Alrumman S, Alamri SAM, Raghu SV, Adiga SK, Kannan N, Thottethodi Subrahmanya KP, Kalthur G. High doses of GrassOut Max poses reproductive hazard by affecting male reproductive function and early embryogenesis in Swiss albino mice. CHEMOSPHERE 2023:139215. [PMID: 37336444 DOI: 10.1016/j.chemosphere.2023.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or 50 mg kg-1 body weight analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d from the first day of treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim-equivalent exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-equivalent treated mice, the expression of Erβ and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-equivalent treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Keerthana Sandesh Suvarna
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Hanumappa
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | - Sulaiman Alrumman
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | | | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
An G, Kim M, Park J, Park H, Hong T, Lim W, Song G. Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109617. [PMID: 36965842 DOI: 10.1016/j.cbpc.2023.109617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Chloroxylenol is an extensively consumed anti-microbial compound. Since its usage is on the rise due to the coronavirus pandemic and ban on other antimicrobial ingredients, recent studies have suggested the necessity of estimating its potential for ecotoxicity. The detrimental effect of chloroxylenol on zebrafish (Danio rerio) viability has been reported; however, research on the mechanisms underlying its toxicity is quite limited. Therefore, we applied the zebrafish model for elucidating responses against chloroxylenol to predict its toxicity toward human health and ecology. Zebrafish exposed to chloroxylenol (0, 0.5, 1, 2.5, 5, and 10 mg/L) at the embryonic stage (from 6 h post-fertilization (hpf) to 96 hpf) showed impaired viability and hatchability, and pathological phenotypes. To address these abnormalities, cellular responses such as oxidative stress, inflammation, and apoptosis were confirmed via in vivo imaging of a fluorescent dye or measurement of the transcriptional changes related to each response. In particular, developmental defects in the cardiovascular system of zebrafish exposed to 0, 0.5, 1, and 2.5 mg/L of chloroxylenol from 6 to 96 hpf were identified by structural analyses of the system in the flk1:eGFP transgenic line. Additional experiments were conducted using human umbilical vein endothelial cells (HUVECs) to predict the adverse impacts of chloroxylenol on the human vascular system. Chloroxylenol impairs the viability and tube formation ability of HUVECs by modulating ERK signaling. The findings obtained using the zebrafish model provide evidence of the possible risks of chloroxylenol exposure and suggest the importance of more in-depth ecotoxicological studies.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Miji Kim
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Xu W, Yang Y, Tian J, Du X, Ye Y, Liu Z, Li Y, Zhao Y. Integrated physiological and transcriptome analysis reveals potential toxicity mechanism of haloxyfop-P-methyl to Chiromantes dehaani. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121879. [PMID: 37230172 DOI: 10.1016/j.envpol.2023.121879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Haloxyfop-P-methyl is widely used in controlling gramineous weeds, including the invasive plant Spartina alterniflora. However, the mechanism of its toxicity to crustaceans is unclear. In this study, we adopted transcriptome analysis combined with physiologic changes to investigate the response of estuarine crab (Chiromantes dehaani) to haloxyfop-P-methyl. The results showed that the median lethal concentration (LC50) of C. dehaani to haloxyfop-P-methyl at 96 h was 12.886 mg/L. Antioxidant system analysis indicated that MDA, CAT, GR, T-GSH, and GSSG might be sensitive biomarkers that characterize the oxidative defense response of the crab. In total, 782 differentially expressed genes were identified, including 489 up-regulated and 293 down-regulated genes. Glutathione metabolism, detoxification response and energy metabolism were significantly enriched, revealing the potential toxic mechanism of haloxyfop-P-methyl to C. dehaani. These results provide a theoretical foundation for further research on haloxyfop-P-methyl toxicity to crustaceans.
Collapse
Affiliation(s)
- Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yiming Li
- Fishery Machinery and Instrument, Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Niu XJ, Sun YH, Wang LJ, Huang YY, Wang Y, Guo XQ, Xu BH, Wang C. Fox transcription factor AccGRF1 in response to glyphosate stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105419. [PMID: 37105625 DOI: 10.1016/j.pestbp.2023.105419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Glyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear. In our experiment, we screened and cloned a glyphosate-induced gene in Apis cerana cerana (A. c. cerana) and named glyphosate response factor 1 (AccGRF1). Sequence analysis showed that AccGRF1 contains a winged-helix DNA binding domain, which suggests that it belongs to the Forkhead box (Fox) protein family. qRT-PCR and heterologous expression in Escherichia coli and yeast showed that AccGRF1 can respond to glyphosate and oxidative stress. After AccGRF1 knockdown by means of RNA interference (RNAi), the resistance of A. c. cerana to glyphosate stress improved. The results suggested that AccGRF1 is involved in A. c. cerana glyphosate stress tolerance. This study reveals the functions of Fox transcription factors in response to glyphosate stress and provides molecular insights into the regulation of glyphosate responses in honeybees.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yun-Hao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuan-Yuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
10
|
Min N, Park H, Hong T, An G, Song G, Lim W. Developmental toxicity of prometryn induces mitochondrial dysfunction, oxidative stress, and failure of organogenesis in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130202. [PMID: 36272374 DOI: 10.1016/j.jhazmat.2022.130202] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Prometryn, 2-methylthio-4,6-bis(isopropylamino)-1,3,5-triazine, is a selective thiomethyl triazine herbicide widely used to control unwanted weeds and harmful insects by inhibiting electron transport in target organisms. Despite having various advantages, herbicides pose as a major threat to the environment and human health due to persistent contamination, bioaccumulation, and damage to non-target organisms. In this study, the developmental toxicity of 5, 10, and 20 mg/L prometryn in zebrafish (Danio rerio) embryos was evaluated and compared to that of the solvent control for 96 h. Several transgenic zebrafish models (fli1a:eGFP, flk1:eGFP, olig2:dsRed and L-fabp:dsRed) were visually assessed to detect fluorescently tagged genes. Results showed that prometryn shortened body length, and induced yolk sac, heart edema, abnormal heart rate, and loss of viability. Fluorescence microscopy revealed that prometryn exposure caused defects in organ development, reactive oxygen species accumulation, and apoptotic cell death. Mitochondrial bioenergetics were also evaluated to determine the effect of prometryn on the electron transport chain activity and metabolic alterations. Prometryn was found to interfere with mitochondrial function, ultimately inhibiting energy metabolism and embryonic development. Collectively, our findings suggest that prometryn is a potential contaminate for non-target sites and organisms, especially aquatic, and emphasize the need to consider the toxic effects of prometryn.
Collapse
Affiliation(s)
- Nayoung Min
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Niu XJ, Wang LJ, Meng H, Wang HF, Xu BH, Wang C. Role of c-Jun NH 2 -terminal kinase-mediated mitogen-activated protein kinase pathway in response to pesticides in Apis cerana cerana. INSECT SCIENCE 2023; 30:47-64. [PMID: 35548935 DOI: 10.1111/1744-7917.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway plays an important role in regulating stress responses. The function of the c-Jun NH2 -terminal kinase (JNK), a component of the MAPK cascade pathway, in Apis cerana cerana (Acc) remains unclear. Here, JNK was isolated and identified from Acc. Bioinformatics analyses revealed there is a typical serine/threonine protein kinase catalytic domain in the AccJNK protein. An expression profile analysis showed that AccJNK was significantly induced by pesticide treatments. To further explore the functional mechanisms of AccJNK, a yeast 2-hybrid screen was performed, activator protein-1 (AP-1) was screened as the interaction partner of AccJNK, and the interaction relationship was further verified by pull-down assay. Quantitative real-time polymerase chain reaction showed the expression pattern of AccAP-1 was similar to that of AccJNK. After a knockdown of AccJNK or AccAP-1 by RNA interference, the survival rate of Acc after pesticide treatments increased. Additionally, the expression levels of antioxidant-related genes and the activities of antioxidant enzymes increased, suggesting that the knockdown of AccJNK or AccAP-1 increased the antioxidant capacity of bees. Our study revealed that the JNK-mediated MAPK pathway responds to pesticide stress by altering the antioxidant capacity of Acc.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hui Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
12
|
Liu Y, Guo J, Liu W, Yang F, Deng Y, Meng Y, Cheng B, Fu J, Zhang J, Liao X, Wei L, Lu H. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108466. [PMID: 36462742 DOI: 10.1016/j.fsi.2022.108466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pesticides are extensively used in agricultural production, and their residues in soil, water, and agricultural products have become a threat to aquatic ecosystem. In this study, the toxicity of haloxyfop-p-methyl, an aryloxyphenoxypropionate herbicide was studied using the model animal zebrafish. The development of zebrafish larvae was affected by haloxyfop-p-methyl including spinal deformities, decreased body length, slow heart rate, and large yolk sac area. Behavior analysis revealed that behavior activity of larvae was weakened significantly including shortened displacement distance, reduced swimming speed, increased angular speed winding degrees, in accordance with higher AChE activity. Besides, exposure to haloxyfop-p-methyl could induce oxidative stress companied by the increased intents of ROS, MDA and increased activities of CAT and SOD. In immunotoxicity, haloxyfop-p-methyl not only reduced the innate immune cells such as neutrophils and macrophages, but also affected T cells mature in thymus. Furthermore, haloxyfop-p-methyl could induce neutrophils apoptosis, accompanied with the upregulation of the expression of proapoptotic protein such as Bax and P53 and the downregulation of the expression of antiapoptotic protein Bcl-2. In addition, haloxyfop-p-methyl could induce the expression of Jak, STAT and proinflammatory cytokine genes (IFN-γ, TNF-α, and IL-8). These results indicate that haloxyfop-p-methyl induces developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish, providing a perspective on the toxicological mechanism of haloxyfop-p-methyl in teleosts.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Wenjin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Fengjie Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
13
|
Nöth J, Michaelis P, Busch W, Scholz S. SOC-II-08 Analysis vascular disruptors in zebrafish embryos as an endpoint to predict developmental toxicity. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|