1
|
Torres-Bonilla KA, Bayona-Serrano JD, Sáenz-Suarez PA, Andrade-Silva D, Bernal-Bautista MH, Serrano SMT, Hyslop S. Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini). Toxicon 2025; 254:108218. [PMID: 39706372 DOI: 10.1016/j.toxicon.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A2 (PLA2) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA2, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P. neuwiedii by undertaking a shotgun proteomic analysis of the venom and comparing the results with a transcriptomic database for Brazilian P. neuwiedii; proteomic data previously obtained by in-gel digestion of electrophoretic bands coupled with mass spectrometry were also reanalyzed by comparing them with the transcriptomic results. The histology of the Duvernoy's venom gland was also examined. Histological analysis revealed a structural organization similar to that of other colubrids that consisted of a serous venom gland and a mucous supralabial gland. When the shotgun proteomic data were run against a general UniProt database for serpents, only metalloproteinases were identified (99% SVMPs, 1% snake endogenous matrix metalloproteinases-9 or seMMP-9). In contrast, when run against a transcriptomic database derived from the venom gland of Brazilian P. neuwiedii that contains predominantly SVMP, CRiSP, type IIE PLA2 (PLA2-IIE), CTL and seMMP-9, the main components identified were seMMP-9 (49%), SVMP (47%), CRiSP (3%) and minor components that included CTL and PLA2-IIE. These findings confirmed the previously reported general composition of P. neuwiedii venom, with metalloproteinases (SVMP and seMMP-9) being the major components, and refined the identification of certain components, e.g., type IIA PLA2 now identified as PLA2-IIE and the detection of seMMP-9 rather than svMMP. The data also indicate compositional similarity between Brazilian and Colombian P. neuwiedii venoms, and stress the need for specific databases for non-front-fanged colubroid snakes to allow accurate and more comprehensive identification of the venom components of these snakes.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Juan D Bayona-Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Paula A Sáenz-Suarez
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Manuel H Bernal-Bautista
- Departamento de Biologia, Universidad del Tolima, Barrio Santa Helena Parte Alta, 731020, Ibagué, Tolima, Colombia
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Gritti MA, González KY, Tavares FL, Teibler GP, Peichoto ME. Exploring the antibacterial potential of venoms from Argentinian animals. Arch Microbiol 2023; 205:121. [PMID: 36934358 DOI: 10.1007/s00203-023-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.
Collapse
Affiliation(s)
- Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - Flavio L Tavares
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina.
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil.
| |
Collapse
|
3
|
Herrera Y, Fuentes-Retamal S, Kemmerling U, Peichoto ME, Ortiz JC, Urra FA. Shedding Light on the Dentition and Venom Delivery System of the Rear-Fanged Snake, Galvarinus chilensis chilensis (Serpentes: Dipsadidae: Tachymenini) from Chile. BIOLOGY 2022; 11:biology11121788. [PMID: 36552297 PMCID: PMC9775764 DOI: 10.3390/biology11121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Although the rear-fanged snake Galvarinus chilensis chilensis (formerly named Tachymenis ch. chilensis) causes ophidian accidents with clinical importance in Chile, the anatomical and histological characterizations of the venom delivery system (venom gland and fang) of this species still remain unknown. This study describes the dentition and characteristics of fangs and their ontogenetic variations in G. ch. chilensis. Moreover, histological and histochemistry analyses of the venom glands of this species are presented. Using micro-computed tomography and scanning electron microscopy, the dentitions of neonates, juveniles, and adults were analyzed, and no ontogenetic variations in teeth length and number present in the dentary and maxilla were observed. Moreover, we found three types of basic teeth, with distributional patterns conserved in all ontogenetic categories. The fangs exhibited a groove from the base to the middle. At the end of the groove, prominent ridges are formed. The fang and groove lengths were significantly distinct between ontogenetic categories. No differences between females and males were observed. Histologically, we found that the venom gland is close to the fangs and has a seromucous composition. Our results describe, for the first time, the distributional pattern and characteristics of the dentition and venom delivery system of the poorly studied snake G. ch. chilensis.
Collapse
Affiliation(s)
- Yarela Herrera
- Metabolic Plasticity and Bioenergetics Laboratory, Program of Clinical and Molecular Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Program of Clinical and Molecular Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 8380453, Chile
| | - Ulrike Kemmerling
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - María Elisa Peichoto
- National Scientific and Technical Research Council (CONICET), National Institute of Tropical Medicine—National Administration of Laboratories and Health Institutes (ANLIS “Dr. Carlos G Malbrán”), Puerto Iguazú 9C59+8V, Misiones, Argentina
| | - Juan Carlos Ortiz
- Department of Zoology, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Concepción 4070032, Chile
| | - Félix A. Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Program of Clinical and Molecular Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 8380453, Chile
- Correspondence:
| |
Collapse
|
4
|
Divergent Specialization of Simple Venom Gene Profiles among Rear-Fanged Snake Genera ( Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins (Basel) 2022; 14:toxins14070489. [PMID: 35878227 PMCID: PMC9319703 DOI: 10.3390/toxins14070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Many venomous animals express toxins that show extraordinary levels of variation both within and among species. In snakes, most studies of venom variation focus on front-fanged species in the families Viperidae and Elapidae, even though rear-fanged snakes in other families vary along the same ecological axes important to venom evolution. Here we characterized venom gland transcriptomes from 19 snakes across two dipsadine rear-fanged genera (Leptodeira and Helicops, Colubridae) and two front-fanged genera (Bothrops, Viperidae; Micrurus, Elapidae). We compared patterns of composition, variation, and diversity in venom transcripts within and among all four genera. Venom gland transcriptomes of rear-fanged Helicops and Leptodeira and front-fanged Micrurus are each dominated by expression of single toxin families (C-type lectins, snake venom metalloproteinase, and phospholipase A2, respectively), unlike highly diverse front-fanged Bothrops venoms. In addition, expression patterns of congeners are much more similar to each other than they are to species from other genera. These results illustrate the repeatability of simple venom profiles in rear-fanged snakes and the potential for relatively constrained venom composition within genera.
Collapse
|
5
|
Casafús MG, Gritti MA, González KY, Sánchez MN, Sciani JM, Martínez MM, Teibler GP, Peichoto ME. Unraveling the distinctive venomous features of the saturniid Hylesia sp.: An integrative approach of a public health concern in Argentina. Acta Trop 2022; 231:106428. [PMID: 35339435 DOI: 10.1016/j.actatropica.2022.106428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
The saturniid genus Hylesia is well known for the cutaneous lepidopterism induced by airborne setae on contact with the skin. Although several cases of such dermatitis have been reported in Argentina, no information about their venoms and toxicological implications on human health is available yet. Thus, we conducted a morphological analysis of the setae/spines and a toxinological characterization (through biological assays and proteomic techniques) of the bristle extract from caterpillars and moths of Hylesia sp. from Misiones, Argentina. By scanning electron microscopy, we revealed the various and distinctive types of urticating structures: harpoon-shaped or spiny setae in caterpillars, and setae with barb-like structures in female moths. Their venom electrophoretic profiles were substantially different, presenting proteins related to toxicity, such as serpins and serine peptidases. The female moth venom exhibited higher caseinolytic activity than the caterpillar venom, and coincidentally only the former noticeably hydrolyzed fibrinogen and gelatin. In addition, the female venom displayed a dose-dependent procoagulant effect. The injection of this venom into mouse skin led to the rapid detection of an increased number of intact and degranulated mast cells in the dermis; a few areas of focal subcutaneous hemorrhage were also observed after 5 h of injection. Altogether, this study provides relevant information about the pathophysiological mechanisms whereby Hylesia sp. from northeastern Argentina can induce toxicity on human beings, and paves the way for treatment strategies of accidents caused by this saturniid lepidopteran.
Collapse
Affiliation(s)
- Milena G Casafús
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina
| | - Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina; Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Matías N Sánchez
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Juliana M Sciani
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis 218, 12916-900 Bragança Paulista, SP, Brazil
| | - María M Martínez
- Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370 Puerto Iguazú, Argentina
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina.
| |
Collapse
|