1
|
Ke L, He W, Zong C, Wang T, Xiao J, Cao Y, Xiao H, Liu X. A novel peptide derived from Haematococcus pluvialis residue balanced lipid metabolism through NHR-49/PPARα and AAK-2/AMPK pathways in Caenorhabditis elegans. Biofactors 2025; 51:e70017. [PMID: 40249062 DOI: 10.1002/biof.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
To explore the potential value of Haematococcus pluvialis residue after astaxanthin extraction, a novel peptide (HPp) was identified as a bioactive component. However, the possible lipid-lowering effect in vivo remains unclear. Thus, the classic model of Caenorhabditis elegans (C. elegans) was employed to evaluate the anti-obesity effects and underlying mechanism. The results showed that 100 μM HPp significantly reduced the overall fat and triglyceride contents, while also remarkably decreasing the lipid droplets size and promoting desaturation of C18:0 to C18:1n9. Subsequent analysis indicated that HPp increased energy expenditure and alleviated intestinal distension. Further molecular research revealed that HPp activated the gene expression of fat-6, fat-7, nhr-49, acs-2, aak-2, atgl-1. Notably, the lipid-lowering effects were abolished in fat-6, fat-7, nhr-49 mutants, and further verified in GFP-tagged nematodes, indicating that HPp balanced lipid metabolism by activating NHR-49/PPARα and AAK-2/AMPK pathways in C. elegans. These findings highlight the high-value applications of marine microalgae.
Collapse
Affiliation(s)
- Liang Ke
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wanshi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chuyao Zong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tiantian Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
3
|
Zhou R, Zhang L, Sun Y, Yan J, Jiang H. Association of urinary bisphenols with oxidative stress and inflammatory markers and their role in obesity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115546. [PMID: 37827096 DOI: 10.1016/j.ecoenv.2023.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Bisphenol A (BPA) and its substitutes are widely used in daily life. Animal and cell line experiments have confirmed the effects of bisphenols on oxidative stress and inflammation. However, current population evidence for the effects of BPA alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), on oxidative stress and inflammation is still sparse. Based on the National Health and Nutrition Examination Survey 2013-2016 data, our study used linear regression, weighted quantile sum model, and Bayesian kernel machine regression model to evaluate the effects of BPA, BPS, and BPF alone and in combination on oxidative stress (serum total bilirubin, and iron) and inflammation (alkaline phosphatase, C-reactive protein, γ-glutamyl transferase ferritin, neutrophil count, lymphocyte count, and neutrophil-to-lymphocyte ratio) markers. On this basis, the possible roles of oxidative stress and inflammation in obesity, which is associated with exposure to bisphenols (BPs), were initially explored. Based on the different covariates selected, a total of 3039 and 2258 participants were included in our study for models 1 and 2, respectively; the median age of participants was 48 years, and 48.7 % were male. Based on all models, our results showed that exposure to BPs alone or in combination was associated with downregulation of serum total bilirubin. Urinary BPF concentration was specifically associated with the neutrophil-to-lymphocyte ratio. Serum total bilirubin may play a role in the association between obesity and BP mixture exposure. Upregulation of the neutrophil-to-lymphocyte ratio was not associated with obesity. In conclusion, our study found that single or combined exposure to BPs, as measured in urine, may be associated with changes in oxidative stress and inflammatory markers, and a decrease in serum total bilirubin may play a mediating role in BP-induced obesity.
Collapse
Affiliation(s)
- Ren Zhou
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yu Sun
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jia Yan
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Hong Jiang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
4
|
Wu ZQ, Chen XM, Ma HQ, Li K, Wang YL, Li ZJ. Akkermansia muciniphila Cell-Free Supernatant Improves Glucose and Lipid Metabolisms in Caenorhabditis elegans. Nutrients 2023; 15:1725. [PMID: 37049564 PMCID: PMC10097305 DOI: 10.3390/nu15071725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.
Collapse
Affiliation(s)
- Zhong-Qin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Xin-Ming Chen
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
| | - Hui-Qin Ma
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Yuan-Liang Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zong-Jun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| |
Collapse
|
5
|
Zhao X, Fu K, Xiang KP, Wang LY, Zhang YF, Luo YP. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and l-glufosinate to Caenorhabditis elegans at environmental concentrations. CHEMOSPHERE 2023; 316:137863. [PMID: 36649895 DOI: 10.1016/j.chemosphere.2023.137863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Glufosinate-ammonium, the second largest transgene crop resistant herbicide, is classified as a mobile persistent pollutant by the U.S. Environmental Protection Agencybecause of its slow decomposition and easy mobile transfer in a water environment. The chronic and multigeneration toxicity of this compound to environmental organisms are alarming. In this study, racemic glufosinate-ammonium and the effective isomer, l-glufosinate-ammonium, were used as the test agents. The developmental, neurotoxic and reproductive toxicities of Caenorhabditis elegans to their parents and progeny were studied by continuous exposure in water at concentrations of 0.1, 1, 10 and 100 μg/L. The causes of toxicity differences were analysed from oxidative stress and transcription levels. Through oxidative stress of C. elegans, racemic glufosinate-ammonium and l-glufosinate-ammonium both mediated the developmental toxicity (shortened developmental cycle, reduced body length and width, promoted ageingand decreased longevity), neurotoxicity (inhibited head swinging, body bending frequency and acetylcholinesterase [AchE] activity) and reproductive toxicity (significant reductions in the number of eggs and offspring in vivo and induced apoptosis of gonadal cells). These phenomena caused oxidative damage (protein and membrane lipid peroxidation) and further induced apoptosis. The changes in various indicators caused by racemic glufosinate-ammonium exposure were more significant than those caused by l-glufosinate-ammonium exposure, and the reproduction-related indicators were more significant than the developmental and neurological indicators. A continuous accumulation of toxicity was observed after multiple generations of continuous exposure. These research results provide a data reference for the ecotoxicological evaluation and risk assessment of glufosinate-ammonium and contribute to the revision and improvement of the related environmental policies of glufosinate-ammonium.
Collapse
Affiliation(s)
- Xu Zhao
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kan Fu
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Radiation Environmental Monitoring Station, Haikou, 571126, China
| | - Kai-Ping Xiang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Lan-Ying Wang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yun-Fei Zhang
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yan-Ping Luo
- School of Plant Protection, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. CHEMOSPHERE 2023; 315:137763. [PMID: 36623601 DOI: 10.1016/j.chemosphere.2023.137763] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A is classified as a high production volume chemical commonly used in the manufacture of polycarbonate plastics, epoxy resins and thermal paper. The endocrine disrupting properties of this xenobiotic have led to the restriction and prohibition of its use in many consumer products. To date, many chemical compounds with a chemical structure similar to bisphenol A have been used in consumer products as its replacement. The ubiquitous occurrence of bisphenol A and its substitutes in the environment and their endocrine activity as well as adverse effects on aquatic organisms is a global concern, especially because many available literature reports show that many substitutes (e.g. bisphenol AF, bisphenol AP, bisphenol B, bisphenol C, bisphenol F, bisphenol G, bisphenol FL, tetrabromobisphenol A) exert adverse effects on aquatic organisms, similar to, or even stronger than bisphenol A. Therefore, the objective of this paper is to provide a comprehensive overview of the production, sources, occurrence and associated toxicity, as well as the endocrine activity of bisphenol A and its substitutes on aquatic species. The environmental levels and ecotoxicological data presented in this review allowed for a preliminary assessment and prediction of the risk of bisphenol A and its substitutes for aquatic organisms. Furthermore, the data collected in this paper highlight that several compounds applied in bisphenol A-free products are not safe alternatives and regulations regarding their use should be introduced.
Collapse
Affiliation(s)
- Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland.
| | - Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| |
Collapse
|
7
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|