1
|
Mukherjee S, Islam S, Sarkar O, Chattopadhyay A. Oxidative Stress in Kidney of Zebrafish due to Individual and Combined Exposure to Amoxicillin, Arsenic, and Fluoride: Involving Nrf2-Keap1-ARE Pathway. J Appl Toxicol 2025; 45:964-975. [PMID: 39910692 DOI: 10.1002/jat.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Toxic manifestations of different antibiotics and metal compounds have been studied comprehensively in the last decades; however, their co-toxicity on aquatic organisms is poorly investigated. This study aimed to evaluate the oxidative stress imposed on zebrafish kidney tissue when exposed to amoxicillin (AMX, 10 μg/L) alone or in combination with 50 μg/L of As2O3 (equivalent to 37.87 μg/L of As) and/or 15 mg/L of NaF (equivalent to 6.8 mg/L of F) for 15 days. We observed increased levels of cellular ROS, MDA, and GSH along with increased activity of CAT enzyme in all the treated groups. Disrupted histoarchitecture, including degeneration of tubular cells, vacuolation, and necrotic spots, was indicative of oxidative damage. mRNA expression of stress responsive genes like nrf2, gpx1, hsp70, keap1, nqo1, cat, and ho1 corroborated the data. Translocation of Nrf2 from cytoplasm to nucleus and its subsequent expression was higher for all the treated groups. Moreover, the mixture effects of AMX + As + F were more severe than the other combinations, while unique exposure with AMX had minimum effects. Highlighting the involvement of the Nrf2-Keap1-ARE pathway, these findings make us aware of the synergistic response of AMX, As, and F in the ecosystem, putting forward a great threat to humankind.
Collapse
Affiliation(s)
- Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Ansuman Chattopadhyay
- Toxicology and Cancer Biology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| |
Collapse
|
2
|
Shaalan WM, Idriss SKA, Lee JS, Mohamed NH, Sayed AEDH. Evaluating the effects of pharmaceutical pollutants on common carp ( Cyprinus carpio): histopathological and antioxidant responses. Front Physiol 2025; 16:1557647. [PMID: 40365086 PMCID: PMC12069368 DOI: 10.3389/fphys.2025.1557647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The release of pharmaceutical chemicals into aquatic environments has emerged as a significant ecological concern, originating from agricultural runoff, sewage effluents, and improper disposal of medications. Methods This study investigates the impacts of four common pharmaceuticals (bromazepam, naproxen, metoprolol, and sotalol) on common carp (Cyprinus carpio), a vital bioindicator species. We evaluated neurological, immunological, and histopathological responses in carp exposed to these pharmaceuticals over 15 days. Results Neurological assessments showed significant reductions in acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities, and nitric oxide (NO) levels, indicating potential disruptions in neurotransmission and enzyme function. Immunological analysis revealed elevated levels of pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6), suggesting an inflammatory response. Histopathological examinations identified tissue alterations in the liver, kidney which correlated with the observed biochemical and immune responses. Discussion These findings highlight the adverse effects of pharmaceutical contaminants on aquatic species, emphasizing the necessity for comprehensive environmental risk assessments and strategies to mitigate their impact. This study enhances the understanding of pharmaceutical pollutants' ecological effects, informing policy and conservation efforts to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Walaa M. Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University, Bochum, Germany
| | - Shaimaa K. A. Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nadia H. Mohamed
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Cunha Carvalho AE, Rodrigues de Oliveira AC, de Sousa Holanda F, Libanio Reis Santos E, de Oliveira-Lima J. Benzophenone-3 (oxybenzone) in zebrafish: histopathological and oxidative stress analysis. Xenobiotica 2025:1-7. [PMID: 40260464 DOI: 10.1080/00498254.2025.2494655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Benzophenone-3, commonly known as oxybenzone, is an organic compound widely used in sunscreens and personal care products for protection against UVA and UVB rays. Due to its environmental persistence and potential toxicity, this study evaluated the effects of BP-3 at an environmentally relevant concentration (1 µg/L) on the gills, kidney, and antioxidant system of zebrafish (Danio rerio).Adult male zebrafish were randomly distributed into three groups, each with three replicates (n = 10 per group): water control, solvent control, and 1 µg/L BP-3, using a static exposure system for 96 hours. After the experiment, histopathological analyses of the gills and kidneys were performed, along with biochemical assessments of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT).Exposure to BP-3 resulted in significant histopathological alterations in the gills, including vascular congestion, epithelial detachment, edoema, and lamellar aneurysm, indicating severe damage to respiratory function. In the kidneys, glomerular capillary dilation, tubular cell vacuolisation, and focal necrosis were observed, suggesting renal dysfunction. Biochemical analyses revealed impairment of the antioxidant defense system: in the gills, SOD activity decreased, while CAT remained unchanged, indicating oxidative stress accumulation. In the kidneys, SOD activity significantly increased, while CAT decreased, suggesting enzymatic imbalance and cumulative oxidative damage.These results demonstrate that BP-3, even at low concentrations, induces significant histopathological and biochemical alterations in the gills and kidneys of D. rerio, highlighting its potential to compromise organ function and antioxidant defences. These findings underscore the need for stricter regulation of BP-3 release into aquatic environments to mitigate its ecotoxicological impacts and protect aquatic biodiversity.
Collapse
|
4
|
Velisek J, Strouhova A, Sandova M, Zuskova E, Dvorak P, Stara A. Effects of praziquantel on early life stages of Grass carp, Ctenopharyngodon idella. VET MED-CZECH 2025; 70:93-100. [PMID: 40248332 PMCID: PMC12001874 DOI: 10.17221/85/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 04/19/2025] Open
Abstract
This study aimed to assess the toxicity of the anthelmintic drug praziquantel in the early life stages of grass carp (Ctenopharyngodon idella). The toxicity was evaluated based on mortality, early ontogeny development, growth, oxidative stress biomarkers, antioxidant enzymes and histopathology. Praziquantel at all tested concentrations (1, 2, 4 and 6 mg/l) showed no significant adverse effects on the hatching of grass carp. Concentrations of 2, 4 and 6 mg/l praziquantel caused significantly (P < 0.01) higher mortality and slower growth compared with controls. Praziquantel at concentrations (4 and 6 mg/l) showed a significant (P < 0.01) delay of early ontogeny of grass carp. Concentration of 2 mg/l praziquantel caused significantly (P < 0.01) higher GST activity than controls. Among the groups, no histological changes were detected in tissues. For the early life of grass carp, praziquantel is safe at concentrations ≤1 mg/l.
Collapse
Affiliation(s)
- Josef Velisek
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Alzbeta Strouhova
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marie Sandova
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Eliska Zuskova
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Petr Dvorak
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Alzbeta Stara
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
5
|
Wei Y, Gao Y, Zhang S, Li Y, Wang Z, Zhang X, Li Z, Li J, Chen Y, Wu D. Gibberellic acid (GA) induces developmental toxicity in zebrafish (Danio rerio) embryos via oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107247. [PMID: 39924290 DOI: 10.1016/j.aquatox.2025.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/11/2025]
Abstract
Gibberellic acid (GA) is a plant growth regulator that stimulates the growth of leaves and increases yield in agricultural production. However, GA is also regarded as an environmental endocrine disruptor, and its effect on aquatic life remains unclear. In this study, the toxic effects of GA on the development of zebrafish (Danio rerio) embryos were evaluated, and the mechanisms were revealed. The expression of genes related to development and function in zebrafish embryos at 96 h post fertilization (96 hpf) were detected by RT-qPCR method. Furthermore, the level of reactive oxygen species (ROS) and the expression of genes related to oxidative stress were detected. The results showed that the hatching and survival rates of zebrafish embryos were inhibited by 25 and 50 μmol/L GA, and the phenotype of pericardial edema was observed, indicating that GA may have cardiotoxicity on zebrafish embryos. Further RT-qPCR experiments showed that the above results may attributed to the down-regulation of Myl7 and Vmhc genes. Besides, the phenotypes of liver degeneration, and the decrease of eye size were led by 10-50 μmol/L GA, along with the alteration of Fabp10a, Gclc, Gsr, Gnat1, and Gnat2 genes, suggesting that GA may exhibit toxicities on liver and eye in zebrafish embryos. In addition, the phenotype of kidney edema and the up-regulation of Kim1, Plce1, and Pkd2 genes were triggered by 50 μmol/L GA, indicating that GA may have toxic effect on kidney in zebrafish embryos. The level of ROS and the expression of genes related to oxidative stress were up-regulated under 10-50 μmol/L GA exposure, which may contribute to the developmental toxicity in zebrafish embryos. In summary, GA may affect the ecological environment of aquatic life, and its harm to aquatic ecology should be given special attention in the future.
Collapse
Affiliation(s)
- Ying Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Yan Gao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Sida Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Zuoying Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Zan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Ying Chen
- First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| |
Collapse
|
6
|
Long XB, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Jiang YX, Ying GG, Shi WJ. Multiomics analysis reveal the impact of 17α-Ethinylestradiol on mortality in juvenile zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110027. [PMID: 39233286 DOI: 10.1016/j.cbpc.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
7
|
Panayiotou E, Hassoulas A, Tuthill D, Miles E, Holloway J. Investigating awareness and implementation of adrenaline auto-injectors (AAI) via the 'Spare Pens in Schools' scheme in Wales: a cross-sectional pilot study. BMJ Paediatr Open 2024; 8:e002958. [PMID: 39542449 PMCID: PMC11580279 DOI: 10.1136/bmjpo-2024-002958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE To investigate awareness and implementation of the Spare Pens (ie, adrenaline auto-injectors (AAIs)) scheme in primary and secondary schools in two regions in Wales. DESIGN A cross-sectional pilot study employing a mixed research methods approach was carried out. SETTING AND PARTICIPANTS State primary and secondary schools within Swansea and Pembrokeshire regional authorities were invited to take part. For geographical context, Swansea is the second largest city in Wales and is situated in the southwest of the country. Pembrokeshire is located in West Wales, with a large rural population outside of its main towns. MAIN OUTCOME MEASURES Awareness and implementation of the Spare Pens in Schools scheme. Additionally, compliance with national guidance was measured by administering a questionnaire capturing data on registers, procedures, storage and training in the use of AAIs. RESULTS 35 schools (30 primary, 5 secondary) participated, with 11% and 6% reporting awareness and implementation of the scheme, respectively. No significant differences in awareness or implementation of the scheme were revealed for school type or region. Secondary schools reportedly stored more AAI devices compared with primary schools. The location of stored AAIs varied by school type, with 46.7% of primary schools storing AAIs in the classroom while 80% of secondary schools stored AAIs in the school office. Procedures for accessing AAI training differed, with 83% of primary schools receiving training by school nurses and 60% of secondary schools accessing training via an allergy team. CONCLUSIONS The overall poor awareness of the Spare Pens in Schools scheme has resulted in a worrying lack of implementation of generic AAI devices. An urgent review of information dissemination regarding the scheme is required.
Collapse
Affiliation(s)
| | - Athanasios Hassoulas
- School of Medicine, Cardiff University College of Biomedical and Life Sciences, Cardiff, UK
| | - David Tuthill
- Paediatrics, Children's Hospital for Wales, Cardiff, Cardiff, UK
| | | | | |
Collapse
|
8
|
Mohanthi S, Sutha J, Gayathri M, Ramesh M. Evaluation of the citalopram toxicity on early development of zebrafish: Morphological, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124399. [PMID: 38906410 DOI: 10.1016/j.envpol.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Citalopram, an antidepressant drug have been detected in different environmental matrices due to its high consumption. Previous study has proved that citalopram may alter the behaviour of aquatic organisms at environmentally relevant concentrations. However, scientific knowledge is still lacking on the ecotoxicological effects of citalopram on aquatic organisms. For this reason, the present study is aimed to investigate the potential toxicity of citalopram in terms of development, antioxidant, neurotoxicity, apoptosis, lipogenesis, and bone mineralization in embryonic and larval zebrafish (Danio rerio) at environmentally relevant concentrations. We noticed that citalopram exposure at 1 and 10 μg/L concentration delays hatching and heartbeat at 24, 48, 72 and 96 hpf. Exposure to citalopram also significantly increased mortality at 10 μg/L. Abnormal development with yolk sac edema, pericardial edema and scoliosis were also observed after citalopram treatment. In addition, citalopram significantly (P < 0.001) induced superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and lipid peroxidation (LPO) levels. A significant decrease in acetylcholine esterase (AChE) activity was also observed in citalopram exposed groups. We found significant dose-and time-dependent increases in apoptosis, lipogenesis, and bone mineralization. In conclusion, the findings of the present study can provide new insights on the ecotoxicity of citalopram in the aquatic environment.
Collapse
Affiliation(s)
- Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
9
|
Wang Y, Nie D, Shao K, Zhang S, Wang Q, Han Z, Chen L. Mechanistic insights into the parental co-exposure of T-2 toxin and epoxiconazole on the F1 generation of zebrafish (Danio rerio). CHEMOSPHERE 2024; 361:142388. [PMID: 38777202 DOI: 10.1016/j.chemosphere.2024.142388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Mycotoxins and pesticides frequently coexist in agricultural commodities on a global scale. The potential transgenerational consequences induced by these substances pose a significant threat to human health. However, there is a lack of data concerning the effects of co-contamination by these chemicals in the F1 generation following parental exposure. This investigation delved into the mixture effects of T-2 toxin (T-2) and epoxiconazole (EPO) on the offspring of zebrafish (Danio rerio). The findings revealed that exposure across generations to a combination of T-2 and EPO resulted in toxicity in the larvae of the F1 generation. This was demonstrated by a significant increase in the levels or activities of malondialdehyde (MDA), thyroxine (T4), Caspase3, and cas9, along with a decrease in the levels of cyp19a, ERα, and ERβ. These outcomes suggested that cross-generational exposure to T-2 and EPO in D. rerio disrupted oxidative balance, induced cell apoptosis, and affected the endocrine system. Moreover, these effects were magnified when the F1 generation was continuously exposed to these compounds. Notably, these adverse effects could persist in subsequent generations without additional exposure. This study underscored the potential dangers associated with the simultaneous presence of T-2 and EPO on the development of fish offspring and the resulting environmental hazards to aquatic ecosystems. These findings emphasized the significant health risks posed by cross-generational exposure and highlighted the need for additional legislative measures to address these concerns.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Shuai Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
10
|
Cardoso L, Owatari MS, Chaves FCM, Ferreira TH, Costa DS, Furtado WE, Tedesco M, Honorato LA, Mouriño JLP, Martins ML. Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e005323. [PMID: 38362241 PMCID: PMC10868529 DOI: 10.29374/2527-2179.bjvm005323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The study evaluated the effects of dietary supplementation with Lippia sidoides essential oil on the microbiota and intestinal morphology of Danio rerio. For this, 448 fish were randomly distributed in 28 tanks divided into a control group fed a commercial diet without supplementation, a group fed a commercial diet containing grain alcohol and five groups fed a commercial diet containing essential oil of L. sidoides (LSEO) at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After the period of dietary supplementation, biological materials were collected for microbiological and histological analyses. There were no significant differences regarding the microbiological count between the groups. Diversity of the microbiome was higher in 0.25% group than in control group. LSEO inhibited the growth of potentially pathogenic bacteria. Fish fed LSEO0.25% showed greater intestinal histomorphometric indices. The inclusion of LSEO at 0.25% in the diet of D. rerio provided improvements in fish microbiota and intestine integrity.
Collapse
Affiliation(s)
- Lucas Cardoso
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Marco Shizuo Owatari
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - Tamiris Henrique Ferreira
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Domickson Silva Costa
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - William Eduardo Furtado
- Aquaculture engineer, DSc., Departamento de Doenças Infecciosas e Saúde Pública, Colégio do Jockey Club de Medicina Veterinária e Ciências da Vida, Universidade da Cidade de Hong Kong, Hong Kong, China.
| | - Marília Tedesco
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - José Luiz Pedreira Mouriño
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Maurício Laterça Martins
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Impellitteri F, Yunko K, Calabrese G, Porretti M, Martyniuk V, Gnatyshyna L, Nava V, Potortì AG, Piccione G, Di Bella G, Stoliar O, Faggio C. Chlorpromazine's impact on Mytilus galloprovincialis: a multi-faceted investigation. CHEMOSPHERE 2024; 350:141079. [PMID: 38160957 DOI: 10.1016/j.chemosphere.2023.141079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 μg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.
Collapse
Affiliation(s)
- Federica Impellitteri
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Giovanna Calabrese
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Miriam Porretti
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Vincenzo Nava
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Angela Giorgia Potortì
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Giuseppe Piccione
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine; Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
12
|
Zhang Z, Qiu T, Zhou J, Gong X, Yang K, Zhang X, Lan Y, Yang C, Zhou Z, Ji Y. Toxic effects of sirolimus and everolimus on the development and behavior of zebrafish embryos. Biomed Pharmacother 2023; 166:115397. [PMID: 37659200 DOI: 10.1016/j.biopha.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
Sirolimus and everolimus have been widely used in children. These mammalian target of rapamycin (mTOR) inhibitors have shown excellent efficacy not only in organ transplant patients as immunosuppressive agents but also in patients with some other diseases. However, whether mTOR inhibitors can affect the growth and development of children is of great concern. In this study, using zebrafish models, we discovered that sirolimus and everolimus could slow the development of zebrafish, affecting indicators such as survival, hatching, deformities, body length, and movement. In addition to these basic indicators, sirolimus and everolimus had certain slowing effects on the growth and development of the nervous system, blood vessels, and the immune system. These effects were dose dependent. When the drug concentration reached or exceeded 0.5 μM, the impacts of sirolimus and everolimus were very significant. More interestingly, the impact was transient. Over time, the various manifestations of experimental embryos gradually approached those of control embryos. We also compared the effects of sirolimus and everolimus on zebrafish, and we revealed that there was no significant difference between these drugs in terms of their effects. In summary, the dose of sirolimus and everolimus in children should be strictly controlled, and the drug concentration should be monitored over time. Otherwise, drug overdosing may have a certain impact on the growth and development of children.
Collapse
Affiliation(s)
- Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuepeng Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Congxia Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zilong Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Impellitteri F, Yunko K, Martyniuk V, Khoma V, Piccione G, Stoliar O, Faggio C. Cellular and oxidative stress responses of Mytilus galloprovincialis to chlorpromazine: implications of an antipsychotic drug exposure study. Front Physiol 2023; 14:1267953. [PMID: 37772055 PMCID: PMC10526897 DOI: 10.3389/fphys.2023.1267953] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Bivalve molluscs like Mytilus galloprovincialis are valuable bioindicators due to their filter-feeding lifestyle, wide distribution, and ability to concentrate xenobiotics. Studying the effects of pharmaceuticals on these molluscs is crucial given their presence in surface waters. This study investigated the response of M. galloprovincialis to chlorpromazine (Cpz), an antipsychotic with antiviral activity against influenza, HIV, and coronaviruses in human cells. Methods: In this study, we examined the 14-day impact of chlorpromazine (Cpz) on the model species M. galloprovincialis at two concentrations (Cpz 1: 12 ng L-1 or 37 pM; Cpz 2: 12 µg L-1 or 37 nM). To ensure controlled exposure, a stock solution of Cpz was prepared and introduced into the tanks to match the intended concentrations. Seawater and stock solutions were refreshed every 48 h. The primary focus of this study centered on evaluating cell viability, cell volume regulation, and oxidative stress indicators. Results: Although cell volume regulation, as assessed by decreasing regulatory volume Regulation volume decrease, did not show statistically significant changes during the experiment, digestive cell viability, on the other hand, showed a significant decrease (p < 0.01) in the Cpz 2 group, suggesting effects on the general health and survival of these cells. Biochemically, in both Cpz 1 and Cpz 2, superoxide dismutase activity increased, while catalase (CAT) decreased, causing an elevated lipid peroxidation thiobarbituric acid-reactive substances and protein carbonyls, particularly in the Cpz 2 group. The level of reduced glutathione (GSH) increased in both exposures, whereas the level of GSSG increased only in the Cpz 1 group. Consequently, the GSH/GSSG ratio was elevated in the Cpz 2 group only. Discussion: A comparison of the magnitudes of anti- and pro-oxidative manifestations indicated a pro-oxidative shift in both exposures. These findings show that Cpz induces non-specific symptoms of biochemical and cellular disturbances in M. galloprovincialis even at the low picomolar concentration.
Collapse
Affiliation(s)
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, Ternopil, Ukraine
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Ibrahim RE, Elbealy MA, Salem GA, Abdelwarith AA, Younis EM, Wagih E, Elkady AA, Davies SJ, Rahman ANA. Acute mancozeb-fungicide exposure induces neuro-ethology disruption, health disorders, and immune-oxidative dysfunction in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106630. [PMID: 37406490 DOI: 10.1016/j.aquatox.2023.106630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
An acute exposure study of mancozeb (MAZ) fungicide was applied on Oreochromis niloticus for 96-h duration. Three hundred fish (20.50 ± 1.60 g) were assigned into six groups (50 fish/ group; 10 fish/replicate) and exposed to different six concentrations (0, 4, 8, 12, 16, and 20 mg L-1) of MAZ for 96-h. The Probit analysis program was used to compute the 96-h lethal concentration 50 (96-h LC50) of MAZ. During the exposure duration, the fish's behavior, clinical symptoms, and mortalities were recorded daily. After the exposure period was ended, the hematological, biochemical, immunological, and oxidant/antioxidant parameters were evaluated. The results of this study recorded the 96-h LC50 of MAZ for O. niloticus to be 11.49 mg L-1. Acute MAZ exposure badly affected the fish's behavior in the form of increased the breath gasping and swimming activity with aggressive mode. The exposed fish showed excessive body hemorrhages and fin rot. The survival rate of the exposed fish to MAZ was 100, 80, 66, 50, 38, and 30% in 0, 4, 8, 12, 16, and 20 mg L-1 MAZ, respectively. The hematological indices (red blood cell count, hemoglobin, packed cell volume%, and white blood cell count) were significantly decreased by increasing the MAZ exposure concentration (8-20 mg L-1). The acetylcholine esterase activity and immune indices (lysozyme, nitric oxide, immunoglobulin M, complement 3) were decreased by MAZ exposure (4-20 mg L-1). Acute MAZ exposure induced hepato-renal dysfunction and elevated stress-related parameter (cortisol) by increasing the MAZ concentration. A significant reduction in the antioxidant parameters (total antioxidant activity, catalase, and superoxide dismutase) with increasing the lipid peroxidation marker (malondialdehyde) was noticed by acute MAZ exposure (4 -20 mg L-1) in O. niloticus. Based on these outcomes, the MAZ exposure induced toxicity to the fish evident in changes in fish behavior, neurological activity, hepato-renal functioning, and immune-antioxidant responses which suggest physiological disruption.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Ahmed Asaid Elkady
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Misurata University, PO Box 2478, Libya
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
15
|
Porretti M, Impellitteri F, Caferro A, Albergamo A, Litrenta F, Filice M, Imbrogno S, Di Bella G, Faggio C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. CHEMOSPHERE 2023; 336:139273. [PMID: 37343639 DOI: 10.1016/j.chemosphere.2023.139273] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.
Collapse
Affiliation(s)
- Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Sciences, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Federica Litrenta
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| |
Collapse
|
16
|
Tao Y, Du C, Duan B, Wang W, Guo H, Feng J, Xu H, Li Y. Eugenol exposure inhibits embryonic development and swim bladder formation in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109602. [PMID: 36906247 DOI: 10.1016/j.cbpc.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Eugenol is a natural phenolic essential oil extracted from cloves, that has analgesic and anesthetic effects and is widely used in fishery anesthesia. However, the potential safety risks of aquaculture production associated with the massive use of eugenol and its developmental toxicity during early life stages of fish have been overlooked. In this study, zebrafish (Danio rerio) embryos at 24 hours post-fertilization (hpf) were exposed to eugenol at concentrations of 0, 10, 15, 20, 25, or 30 mg/L for 96 h. Eugenol exposure delayed the hatching of zebrafish embryos, and reduced the body length and the inflation rate of the swim bladder. The accumulated number of dead zebrafish larvae in the eugenol-exposed groups was higher than that of the control group, and it was dose-dependent. Real-time quantitative polymerase chain reaction (qPCR) analysis showed that the Wnt/β-catenin signaling pathway that regulates the development of the swim bladder during the hatching and mouth-opening stages was inhibited after eugenol exposure. Specifically, the expression of wif1, a Wnt signaling pathway inhibitor, was significantly up-regulated, whereas the expression of fzd3b, fzd6, ctnnb1, and lef1 involved in the Wnt/β-catenin pathway was significantly down-regulated. These results suggest that the failure of zebrafish larvae to inflate their swim bladders as a result of eugenol exposure may be caused by the inhibition of the Wnt/β-catenin signaling pathway inhibited. In addition, the inability to catch food due to the abnormal development of the swim bladder may be the key to the death of zebrafish larvae during the mouth-opening stage.
Collapse
Affiliation(s)
- Yixi Tao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chunying Du
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Bicheng Duan
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wenbo Wang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hui Guo
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jingyun Feng
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Das S, Kar I, Patra AK. Cadmium induced bioaccumulation, histopathology, gene regulation in fish and its amelioration - A review. J Trace Elem Med Biol 2023; 79:127202. [PMID: 37263063 DOI: 10.1016/j.jtemb.2023.127202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
Different anthropogenic activities as well as natural sources contribute enormously towards various heavy metal contaminations in aquatic habitats. Cadmium (Cd) is one of most prevalent and toxic heavy metals with a long half life. Unlike terrestrial animals, exposure of Cd in fishes may happen not only through feeds but also from its habitat water. Bioaccumulation of Cd in fishes occurs in many tissues, but mainly in gill, liver, kidney, skin, and muscle. The concentrations of Cd in fish tissues depend upon the extent and duration of Cd exposure, species and age of fishes, dietary minerals and antioxidant concentrations, and habitat water quality. Specific histopathological observations in liver, kidney, and gill are useful to understand the effects of Cd, which could help to determine the ameliorating methods to be adopted. Exposure of Cd exerts several adverse effects on general growth and development, reproductive processes, osmoregulation, morphological and histological structures, stress tolerance, and endocrine system, mainly due to changes in biological functions induced by differential expressions of several genes related to oxidative stress, apoptosis, inflammation, immunosuppressions, genotoxicity, Cd chelation and carbohydrate metabolism. Chronic biomagnifications of Cd exceeding the permitted level may be harmful not only to the fishes itself but also to humans through food chains. Amelioration of such toxic heavy metal that has been categorized as a potent carcinogenic in humans is of utmost importance. Main modes of amelioration encompas reducing oxidative damages by promoting the antioxidative defenses, decreasing Cd absorption, increasing excretion through excretory system and improving the tolerance of fishes to Cd toxicity. Many amelioration measures such as use of minerals (for example, zinc, calcium, and iron), vitamins (vitamin C, A, and E), different herbs, probiotics and other agents (taurine, bentonite, chitosan, zeolite, and metallothionein) have been explored for their effective roles to reduce Cd bioaccumulation and toxicity symptoms in fishes. The present review discusses bioaccumulation of Cd, histopathological alterations, oxidative stress, synergism-antagonism, and gene regulation in different tissues, and its amelioration measures in fishes.
Collapse
Affiliation(s)
- Srinibas Das
- Department of Fish Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India.
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India.
| |
Collapse
|
18
|
Gayen T, Tripathi A, Kumari U, Mittal S, Mittal AK. Ecotoxicological impacts of environmentally relevant concentrations of aspirin in the liver of Labeo rohita: Biochemical and histopathological investigation. CHEMOSPHERE 2023; 333:138921. [PMID: 37178937 DOI: 10.1016/j.chemosphere.2023.138921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Aspirin is one of the emerging pharmaceutical contaminants in the aquatic environment and thus it could impart toxicity to non-target organisms including fish. The present study aims to investigate the biochemical and histopathological alterations in the liver of the fish, Labeo rohita exposed to environmentally relevant concentrations of aspirin (1, 10, and 100 μg/L) for 7, 14, 21, and 28 days. The biochemical investigation revealed a significant (p < 0.05) decrease in the activity of antioxidant enzymes such as catalase, glutathione peroxidase, glutathione reductase; and reduced glutathione content in a concentration and duration dependent manner. Further, the decrease in the activity of superoxide dismutase was in a dose dependent manner. The activity of glutathione-s-transferase, however, increased significantly (p < 0.05) in a dose dependent manner. The lipid peroxidation and total nitrate content showed a significant (p < 0.05) increase in a dose and duration dependent manner. The metabolic enzymes such as acid phosphatase, alkaline phosphatase, and lactate dehydrogenase showed a significant (p < 0.05) increase in all three exposure concentrations and durations. The histopathological alterations in the liver such as vacuolization, hypertrophy of the hepatocytes, nuclear degenerative changes, and bile stagnosis increased in a dose and duration dependent manner. Hence, the present study concludes aspirin has a toxic impact on fish, which is evidenced by its profound effect on biochemical parameters and histopathological analysis. These can be employed as potential indicators of pharmaceutical toxicity in the field of environmental biomonitoring.
Collapse
Affiliation(s)
- Tuhina Gayen
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Anchal Tripathi
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Usha Kumari
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India.
| | - Swati Mittal
- Skin Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Ajay Kumar Mittal
- Skin Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
19
|
Wang B, Wang A, Xu C, Tong Z, Wang Y, Zhuo X, Fu L, Yao W, Wang J, Wu Y. Molecular, morphological and behavioral alterations of zebrafish (Danio rerio) embryos/larvae after clorprenaline hydrochloride exposure. Food Chem Toxicol 2023; 176:113776. [PMID: 37059383 DOI: 10.1016/j.fct.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Chlorprenaline hydrochloride (CLOR) is a typical representative of β-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chengrui Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Xiaocong Zhuo
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Lixiang Fu
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
20
|
Jijie R, Paduraru E, Simionov IA, Faggio C, Ciobica A, Nicoara M. Effects of Single and Combined Ciprofloxacin and Lead Treatments on Zebrafish Behavior, Oxidative Stress, and Elements Content. Int J Mol Sci 2023; 24:4952. [PMID: 36902383 PMCID: PMC10003324 DOI: 10.3390/ijms24054952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Even though the toxic effects of antibiotics and heavy metals have been extensively studied in the last decades, their combined adverse impact on aquatic organisms is poorly understood. Therefore, the objective of this study was to assess the acute effects of a ciprofloxacin (Cipro) and lead (Pb) mixture on the 3D swimming behavior, acetylcholinesterase (AChE) activity, lipid peroxidation level (MDA-malondialdehyde), activity of some oxidative stress markers (SOD-superoxide dismutase and GPx-glutathione peroxidase), and the essential elements content (Cu-copper, Zn-zinc, Fe-iron, Ca-calcium, Mg-magnesium, Na-sodium and K-potassium) in the body of zebrafish (Danio rerio). For this purpose, zebrafish were exposed to environmentally relevant concentrations of Cipro, Pb, and a mixture for 96 h. The results revealed that acute exposure to Pb alone and in mixture with Cipro impaired zebrafish exploratory behavior by decreasing swimming activity and elevating freezing duration. Moreover, significant deficiencies of Ca, K, Mg, and Na contents, as well as an excess of Zn level, were observed in fish tissues after exposure to the binary mixture. Likewise, the combined treatment with Pb and Cipro inhibited the activity of AChE and increased the GPx activity and MDA level. The mixture produced more damage in all studied endpoints, while Cipro had no significant effect. The findings highlight that the simultaneous presence of antibiotics and heavy metals in the environment can pose a threat to the health of living organisms.
Collapse
Affiliation(s)
- Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700506 Iasi, Romania
| | - Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Ira-Adeline Simionov
- Rexdan Research Infrastructure, “Dunarea de Jos” University Galati, 800008 Galati, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, “Dunarea de Jos” University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| |
Collapse
|
21
|
Lin Y, Yu J, Wang M, Wu L. Toxicity of single and combined 4-epianhydrotetracycline and cadmium at environmentally relevant concentrations on the zebrafish embryos (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120543. [PMID: 36341832 DOI: 10.1016/j.envpol.2022.120543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The combined pollution of antibiotics and heavy metals has attracted a worldwide attention in the recent years. 4-epianhydrotetracycline (EATC) is the major degradation product of tetracycline (TC), which has been detected frequently in environment and its concentration is even higher than TC under some circumstances. Cadmium (Cd) is a common heavy metal contaminant and has highly toxic to organisms, plants and humans even at low doses. In the present study, zebrafish (Danio rerio) embryo toxicity test was performed to investigate the single and combined effects of EATC and Cd on aquatic organisms. Exposure to EATC and Cd at environmentally relevant concentrations had a series of hazardous impacts on the embryonic development, including lethality, hatching rate, heart rate and teratogenic effects. Compared to the contaminant existed alone, combined pollution produced stronger toxicity, which appeared as the decreasing of heart rate and hatching rate, and the increasing of malformation of zebrafish embryos. After 96 h exposure, the reactive oxygen species (ROS) levels in zebrafish embryos were increased significantly, revealing that EATC-Cd co-exposure resulted in potential oxidative stress-induced damage. Acridine orange (AO) staining showed that combined exposure resulted in stronger cell apoptosis. The potential health risks of the combined pollution of EATC and Cd should be paid more attention to higher level vertebrates and humans.
Collapse
Affiliation(s)
- Yinxuan Lin
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Jiao Yu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Meng Wang
- College of Biology and Environmental Science, Jishou University, Jishou, 416000, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|