1
|
Cao J, Wu S, Zhao S, Wang L, Wu Y, Song L, Sun C, Liu Y, Liu Z, Zhu R, Liang R, Wang W, Sun Y. USP24 promotes autophagy-dependent ferroptosis in hepatocellular carcinoma by reducing the K48-linked ubiquitination of Beclin1. Commun Biol 2024; 7:1279. [PMID: 39379617 PMCID: PMC11461744 DOI: 10.1038/s42003-024-06999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Ubiquitination is a post-translational modification (PTM), which is critical to maintain cell homeostasis. Ubiquitin-specific protease 24 (USP24) plays roles in various diseases, the mechanisms by which USP24 regulates hepatocellular carcinoma (HCC) remain poorly understood. In this study, USP24 is found to be significantly downregulated in HCC. Knocking down USP24 promotes HCC proliferation and migration, whereas USP24 overexpression inhibits HCC in vitro and in vivo. The endogenous interaction between USP24 and Beclin1 is confirmed. Mechanically, USP24 delays Beclin1 degradation by reducing its K48-linked ubiquitination, the effects of overexpressing USP24 on HCC proliferation can be partially reversed by silencing Beclin1. We find that increased autophagy is accompanied by ferroptosis in USP24 overexpressed HCC cells and USP24 increases the susceptibility of HCC to sorafenib. Collectively, this study highlights the critical role of USP24 in regulating autophagy-dependent ferroptosis by decreasing Beclin1 ubiquitination, suggesting that targeting USP24 may be a strategy for treating HCC.
Collapse
Affiliation(s)
- Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liming Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhipu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China.
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Wang S, Wu Y, Yang F, Hsu F, Zhang K, Hung J. NCI677397 targeting USP24-mediated induction of lipid peroxidation induces ferroptosis in drug-resistant cancer cells. Mol Oncol 2024; 18:2255-2276. [PMID: 38140768 PMCID: PMC11467797 DOI: 10.1002/1878-0261.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer represents a profound challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major problem in cancer therapy and can result in progression of the disease. In our previous studies, we developed small-molecule inhibitors targeting ubiquitin-specific peptidase 24 (USP24) to combat drug-resistant lung cancer. Recently, we found that the USP24 inhibitor NCI677397 induced ferroptosis, a type of programmed cell death, in drug-resistant cancer cells by increasing lipid reactive oxygen species (ROS) levels. In the present study, we investigated the molecular mechanisms and found that the targeting of USP24 by NCI677397 increased gene expression of most lipogenesis-related genes, such as acyl-CoA synthetase long-chain family member 4 (ACSL4), and activated autophagy. In addition, the activity of several antioxidant enzymes, such as glutathione peroxidase 4 (GPX4) and dihydrofolate reductase (DHFR), was inhibited by NCI677397 treatment via an increase in protein degradation, thereby inducing lipid ROS production and lipid peroxidation. In summary, we demonstrated that NCI677397 induced a marked increase in lipid ROS levels, subsequently causing lipid peroxidation and leading to the ferroptotic death of drug-resistant cancer cells. Our study provides new insights into the clinical use of USP24 inhibitors as ferroptosis inducers (FINs) to block drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Shao‐An Wang
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Yu‐Chih Wu
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Feng‐Ming Yang
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Feng‐Lin Hsu
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaiwan
| | - Kuan Zhang
- Cardiovascular Research InstituteUniversity of California, San FranciscoCAUSA
| | - Jan‐Jong Hung
- Department of Biotechnology and Bioindustry SciencesNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
3
|
Wu Q, Qiu Y, Guo J, Yuan Z, Yang Y, Zhu Q, Zhang Z, Guo J, Wu Y, Zhang J, Huang D, Tu K, Hu X. USP40 promotes hepatocellular carcinoma cell proliferation, migration and stemness by deubiquitinating and stabilizing Claudin1. Biol Direct 2024; 19:13. [PMID: 38308285 PMCID: PMC10837946 DOI: 10.1186/s13062-024-00456-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignant tumor that poses a major threat to people's lives and health. Previous studies have found that multiple deubiquitinating enzymes are involved in the pathogenesis of HCC. The purpose of this work was to elucidate the function and mechanism of the deubiquitinating enzyme USP40 in HCC progression. METHODS The expression of USP40 in human HCC tissues and HCC cell lines was investigated using RT-qPCR, western blotting and immunohistochemistry (IHC). Both in vitro and in vivo experiments were conducted to determine the crucial role of USP40 in HCC progression. The interaction between USP40 and Claudin1 was identified by immunofluorescence, co-immunoprecipitation and ubiquitination assays. RESULTS We discovered that USP40 is elevated in HCC tissues and predicts poor prognosis in HCC patients. USP40 knockdown inhibits HCC cell proliferation, migration and stemness, whereas USP40 overexpression shows the opposite impact. Furthermore, we confirmed that Claudin1 is a downstream gene of USP40. Mechanistically, USP40 interacts with Claudin1 and inhibits its polyubiquitination to stabilize Claudin1 protein. CONCLUSIONS Our study reveals that USP40 enhances HCC malignant development by deubiquitinating and stabilizing Claudin1, suggesting that targeting USP40 may be a novel approach for HCC therapy.
Collapse
Affiliation(s)
- Qingsong Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yuanyuan Qiu
- Department of Oncology, Teng Zhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, 277500, China
| | - Jinhui Guo
- The Medical College of Qingdao University, Qingdao, 266000, China
| | - Zibo Yuan
- The Medical College of Qingdao University, Qingdao, 266000, China
| | - Yingnan Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingwei Zhu
- The Medical College of Qingdao University, Qingdao, 266000, China
| | - Zhe Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junwei Guo
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanfang Wu
- Department of Hematology, The First People's Hospital of Fuyang Hangzhou, Hangzhou, 311402, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital of Zhejiang Province, Lishui, 323020, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Nielsen PYØ, Okarmus J, Meyer M. Role of Deubiquitinases in Parkinson's Disease-Therapeutic Perspectives. Cells 2023; 12:651. [PMID: 36831318 PMCID: PMC9954239 DOI: 10.3390/cells12040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
Collapse
Affiliation(s)
- Pernille Y. Ø. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
5
|
Wang SA, Young MJ, Wang YC, Chen SH, Liu CY, Lo YA, Jen HH, Hsu KC, Hung JJ. USP24 promotes drug resistance during cancer therapy. Cell Death Differ 2021; 28:2690-2707. [PMID: 33846536 PMCID: PMC8408266 DOI: 10.1038/s41418-021-00778-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
Drug resistance has remained an important issue in the treatment and prevention of various diseases, including cancer. Herein, we found that USP24 not only repressed DNA-damage repair (DDR) activity by decreasing Rad51 expression to cause the tumor genomic instability and cancer stemness, but also increased the levels of the ATP-binding cassette (ABC) transporters P-gp, ABCG2, and ezrin to enhance the pumping out of Taxol from cancer cells, thus resulted in drug resistance during cancer therapy. A novel USP24 inhibitor, NCI677397, was screened for specific inhibiting the catalytic activity of USP24. This inhibitor was identified to suppress drug resistance via decreasing genomic instability, cancer stemness, and the pumping out of drugs from cancer cells. Understanding the role and molecular mechanisms of USP24 in drug resistance will be beneficial for the future development of a novel USP24 inhibitor. Our studies provide a new insight of USP24 inhibitor for clinically implication of blocking drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Shao-An Wang
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ,grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Young
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chang Wang
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Hui Chen
- grid.64523.360000 0004 0532 3255Department of Chemistry, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-An Lo
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Hsiang Jen
- grid.64523.360000 0004 0532 3255Department of Chemistry, College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Cheng Hsu
- grid.412896.00000 0000 9337 0481Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- grid.64523.360000 0004 0532 3255Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep 2020; 10:20870. [PMID: 33257797 PMCID: PMC7705756 DOI: 10.1038/s41598-020-78000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
Bromodomain (BRD)-containing proteins are important for chromatin remodeling to regulate gene expression. In this study, we found that the deubiquitinase USP24 interacted with BRD through its C-terminus increased the levels of most BRD-containing proteins through increasing their protein stability by the removal of ubiquitin from Lys391/Lys400 of the BRD. In addition, we found that USP24 and BRG1 could regulate each other through regulating the protein stability and the transcriptional activity, respectively, of the other, suggesting that the levels of USP24 and BRG1 are regulated to form a positive feedback loop in cancer progression. Loss of the interaction motif of USP24 eliminated the ability of USP24 to stabilize BRD-containing proteins and abolished the effect of USP24 on cancer progression, including its inhibition of cancer cell proliferation and promotion of cancer cell migration, suggesting that the interaction between USP24 and the BRD is important for USP24-mediated effects on cancer progression. The targeting of BRD-containing proteins has been developed as a strategy for cancer therapy. Based on our study, targeting USP24 to inhibit the levels of BRD-containing proteins may inhibit cancer progression.
Collapse
|
7
|
Abstract
Essential tremor (ET) is a neurological movement disorder characterised by bilateral limb kinetic/postural tremor, with or without tremor in other body parts including head, voice and lower limbs. Since no causative genes for ET have been identified, it is likely that the disorder occurs as a result of complex genetic factors interacting with various cellular and environmental factors that can result in abnormal function of circuitry involving the cerebello-thalamo-cortical pathway. Genetic analyses have uncovered at least 14 loci and 11 genes that are related to ET, as well as various risk or protective genetic factors. Limitations in ET genetic analyses include inconsistent disease definition, small sample size, varied ethnic backgrounds and many other factors that may contribute to paucity of relevant genetic data in ET. Genetic analyses, coupled with functional and animal studies, have led to better insights into possible pathogenic mechanisms underlying ET. These genetic studies may guide the future development of genetic testing and counselling, and specific, pathogenesis-targeted, therapeutic strategies.
Collapse
|
8
|
Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLAR L and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res 2019; 38:181. [PMID: 31046799 PMCID: PMC6498657 DOI: 10.1186/s13046-019-1182-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
Background GMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. In the cytosol, GMEB1 interacts with and inhibits CASP8, but the molecular mechanism is currently unknown. Methods Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of GMEB1/USP40/CFLARL complex by WB, GST Pull-Down Assay, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. A549 cells overexpressing green fluorescent protein and GMEB1 shRNA were used for tumor xenograft using female athymic nu/nu 4-week-old mice. Results We found GMEB1 interacted with CFLARL (also known as c-FLIPL) in the cytosol and promoted its stability. USP40 targeted CFLARL for K48-linked de-ubiquitination. GMEB1 promoted the binding of USP40 to CFLARL. USP40 knockdown did not increase CFLARL protein level despite GMEB1 overexpression, suggesting GMEB1 promotes CFLARL stability via USP40. Additionally, GMEB1 inhibited the activation of pro-caspase 8 and apoptosis in non-small cell lung cancer (NSCLC) cell via CFLARL stabilization. Also, GMEB1 inhibited the formation of DISC upon TRAIL activation. CFLARL enhanced the binding of GMEB1 and CASP8. Downregulation of GMEB1 inhibited A549 xenograft tumor growth in vivo. Conclusions Our findings show the de-ubiquitinase USP40 regulates the ubiquitination and degradation of CFLARL; and GMEB1 acts as a bridge protein for USP40 and CFLARL. Mechanistically, we found GMEB1 inhibits the activation of CASP8 by modulating ubiquitination and degradation of CFLARL. These findings suggest a novel strategy to induce apoptosis through CFLARL targeting in human NSCLC cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1182-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Thayer JA, Awad O, Hegdekar N, Sarkar C, Tesfay H, Burt C, Zeng X, Feldman RA, Lipinski MM. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy 2019; 16:140-153. [PMID: 30957634 PMCID: PMC6984603 DOI: 10.1080/15548627.2019.1598754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify USP24 (ubiquitin specific peptidase 24), a gene located in the PARK10 (Parkinson disease 10 [susceptibility]) locus associated with late onset PD, as a novel negative regulator of autophagy. Our data indicate that USP24 regulates autophagy by affecting ubiquitination and stability of the ULK1 protein. Knockdown of USP24 in cell lines and in human induced-pluripotent stem cells (iPSC) differentiated into dopaminergic neurons resulted in elevated ULK1 protein levels and increased autophagy flux in a manner independent of MTORC1 but dependent on the class III phosphatidylinositol 3-kinase (PtdIns3K) activity. Surprisingly, USP24 knockdown also improved neurite extension and/or maintenance in aged iPSC-derived dopaminergic neurons. Furthermore, we observed elevated levels of USP24 in the substantia nigra of a subpopulation of idiopathic PD patients, suggesting that USP24 may negatively regulate autophagy in PD. Abbreviations: Bafilomycin/BafA: bafilomycin A1; DUB: deubiquitinating enzyme; iPSC: induced pluripotent stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; nt: non-targeting; PD: Parkinson disease; p-ATG13: phospho-ATG13; PtdIns3P: phosphatidylinositol 3-phosphate; RPS6: ribosomal protein S6; SNPs: single nucleotide polymorphisms; TH: tyrosine hydroxylase; USP24: ubiquitin specific peptidase 24
Collapse
Affiliation(s)
- Julia A Thayer
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology
| | - Nivedita Hegdekar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henok Tesfay
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameran Burt
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Marta M Lipinski
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, Tong Y, Zhou L, Yang L, Yang J, Lei H, Xu H, Liu C, Wu Y. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2019; 19:56. [PMID: 30911287 PMCID: PMC6415346 DOI: 10.1186/s12935-019-0773-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is a lymphoid malignancy caused by the oncogenic transformation of immature T-cell progenitors with poor outcomes. WP1130 has shown potent activity against a variety of cancer but whether WP1130 has anti-T-ALL activity is not clear. USP24, one target of WP1130, is one of the largest deubiquitinases and its detailed mechanism is poorly understood. The aim of this study was to explore whether WP1130 could suppress T-ALL and the role of USP24 in T-ALL. Methods Molecular docking and cellular thermal shift assay were performed to determine whether and how WP1130 directly interact with USP24. Mitochondrial transmembrane potential assay was measured via Rhodamine 123 staining. USP24 was reactivated using the deactivated CRISPR-associated protein 9 (dCas9)-synergistic activation mediator (SAM) system. The in vivo results were examined by tumor xenografts in NOD-SCID mice. All statistical analyses were performed with the SPSS software package. Results WP1130 treatment decreased the viability and induces apoptosis of T-ALL cells both in vitro and in vivo. Furthermore, we demonstrated that knockdown of USP24 but not USP9X could significantly induce growth inhibition and apoptosis of T-ALL cells. Oncomine database showed that USP24 expression was upregulated in T-ALL samples and Kaplan–Meier results indicated that the USP24 was negatively but USP9X was positively associated with survival in T-ALL patients. Additionally, we proposed that WP1130 directly interacts with the activity site pocket of USP24 in T-ALL cells, which leads to the decrease of its substrates Mcl-1. Mechanistically, WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. Conclusions Altogether, using WP1130 as a chemical probe, we demonstrate that USP24 but not USP9X is a novel target in T-ALL cells. Moreover, we uncovered that WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. These results provide that USP24-Mcl-1 axis may represent a novel strategy in the treatment of T-ALL and WP1130 is a promising lead compound for developing anti-T-ALL drugs. Electronic supplementary material The online version of this article (10.1186/s12935-019-0773-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Luo
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bo Jing
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yu Xia
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yugen Zhang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Meng Hu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Haiyan Cai
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yin Tong
- 2Department of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Zhou
- 3State Key Laboratory of Medical Genomics, Department of Hematology, Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Li Yang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Junmei Yang
- 4Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018 China
| | - Hu Lei
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hanzhang Xu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chuanxu Liu
- 5Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yingli Wu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
11
|
USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun 2018; 9:3996. [PMID: 30266897 PMCID: PMC6162259 DOI: 10.1038/s41467-018-06178-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
We have previously demonstrated that USP24 is involved in cancer progression. Here, we found that USP24 expression is upregulated in M2 macrophages and lung cancer cells. Conditioned medium from USP24-knockdown M2 macrophages decreases the migratory and chemotactic activity of lung cancer cells and the angiogenic properties of human microvascular endothelial cell 1 (HMEC-1). IL-6 expression is significantly decreased in USP24-knockdown M2 macrophages and lung cancer cells, and IL-6-replenished conditioned medium restores the migratory, chemotactic and angiogenetic properties of the cells. USP24 stabilizes p300 and β-TrCP to increase the levels of histone-3 acetylation and NF-κB, and decreases the levels of DNMT1 and IκB, thereby increasing IL-6 transcription in M2 macrophages and lung cancer cells, results in cancer malignancy finally. IL-6 has previously been a target for cancer drug development. Here, we provide direct evidence to support that USP24 promotes IL-6 expression, which might be beneficial for cancer therapy. USP24 has previously been reported to be involved in cancer progression. Here, the authors demonstrate that USP24 stabilizes p300 and β-TrCP to increase the levels of NF-κB and histone-3 acetylation, and decrease DNMT1 and IκB levels which promotes IL-6 expression in M2 macrophages and lung cancer cells.
Collapse
|
12
|
Human Cytomegalovirus Protein pUL38 Prevents Premature Cell Death by Binding to Ubiquitin-Specific Protease 24 and Regulating Iron Metabolism. J Virol 2018; 92:JVI.00191-18. [PMID: 29695420 DOI: 10.1128/jvi.00191-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) protein pUL38 has been shown to prevent premature cell death by antagonizing cellular stress responses; however, the underlying mechanism remains unknown. In this study, we identified the host protein ubiquitin-specific protease 24 (USP24) as an interaction partner of pUL38. Mutagenesis analysis of pUL38 revealed that amino acids TFV at positions 227 to 230 were critical for its interaction with USP24. Mutant pUL38 TFV/AAA protein did not bind to USP24 and failed to prevent cell death induced by pUL38-deficient HCMV infection. Knockdown of USP24 suppressed the cell death during pUL38-deficient HCMV infection, suggesting that pUL38 achieved its function by antagonizing the function of USP24. We investigated the cellular pathways regulated by USP24 that might be involved in the cell death phenotype by testing several small-molecule compounds known to have a protective effect during stress-induced cell death. The iron chelators ciclopirox olamine and Tiron specifically protected cells from pUL38-deficient HCMV infection-induced cell death, thus identifying deregulated iron homeostasis as a potential mechanism. Protein levels of nuclear receptor coactivator 4 (NCOA4) and lysosomal ferritin degradation, a process called ferritinophagy, were also regulated by pUL38 and USP24 during HCMV infection. Knockdown of USP24 decreased NCOA4 protein stability and ferritin heavy chain degradation in lysosomes. Blockage of ferritinophagy by genetic inhibition of NCOA4 or Atg5/Atg7 prevented pUL38-deficient HCMV infection-induced cell death. Overall, these results support the hypothesis that pUL38 binds to USP24 to reduce ferritinophagy, which may then protect cells from lysosome dysfunction-induced cell death.IMPORTANCE Premature cell death is considered a first line of defense against various pathogens. Human cytomegalovirus (HCMV) is a slow-replicating virus that encodes several cell death inhibitors, such as pUL36 and pUL37x1, which allow it to overcome both extrinsic and intrinsic mitochondrion-mediated apoptosis. We previously identified HCMV protein pUL38 as another virus-encoded cell death inhibitor. In this study, we demonstrated that pUL38 achieved its activity by interacting with and antagonizing the function of the host protein ubiquitin-specific protease 24 (USP24). pUL38 blocked USP24-mediated ferritin degradation in lysosomes, which could otherwise be detrimental to the lysosome and initiate cell death. These novel findings suggest that iron metabolism is finely tuned during HCMV infection to avoid cellular toxicity. The results also provide a solid basis for further investigations of the role of USP24 in regulating iron metabolism during infection and other diseases.
Collapse
|
13
|
Takagi H, Nishibori Y, Katayama K, Katada T, Takahashi S, Kiuchi Z, Takahashi SI, Kamei H, Kawakami H, Akimoto Y, Kudo A, Asanuma K, Takematsu H, Yan K. USP40 gene knockdown disrupts glomerular permeability in zebrafish. Am J Physiol Renal Physiol 2017; 312:F702-F715. [DOI: 10.1152/ajprenal.00197.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022] Open
Abstract
Unbiased transcriptome profiling and functional genomics approaches have identified ubiquitin-specific protease 40 (USP40) as a highly specific glomerular transcript. This gene product remains uncharacterized, and its biological function is completely unknown. Here, we showed that mouse and rat glomeruli exhibit specific expression of the USP40 protein, which migrated at 150 kDa and was exclusively localized in the podocyte cytoplasm of the adult kidney. Double-labeling immunofluorescence staining and confocal microscopy analysis of fetal and neonate kidney samples revealed that USP40 was also expressed in the vasculature, including in glomerular endothelial cells at the premature stage. USP40 in cultured glomerular endothelial cells and podocytes was specifically localized to the intermediate filament protein nestin. In glomerular endothelial cells, immunoprecipitation confirmed actual protein-protein binding of USP40 with nestin, and USP40-small-interfering RNA transfection revealed significant reduction of nestin. In a rat model of minimal-change nephrotic syndrome, USP40 expression was apparently reduced, which was also associated with the reduction of nestin. Zebrafish morphants lacking Usp40 exhibited disorganized glomeruli with the reduction of the cell junction in the endothelium and foot process effacement in the podocytes. Permeability studies in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. These data indicate that USP40/Usp40 is a novel protein that might play a crucial role in glomerulogenesis and the glomerular integrity after birth through the modulation of intermediate filament protein homeostasis.
Collapse
Affiliation(s)
- Hisashi Takagi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yukino Nishibori
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kan Katayama
- Division of Matrix Biology, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Tomohisa Katada
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shohei Takahashi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Zentaro Kiuchi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Laboratory of Cell Regulation, Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Katsuhiko Asanuma
- Medical Innovation Center, TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | - Hiromu Takematsu
- Laboratory of Biochemistry, Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
14
|
EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene 2016; 36:2930-2945. [PMID: 27991932 PMCID: PMC5454318 DOI: 10.1038/onc.2016.445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
In this study, several cancer-related proteins (Bax, p300, E2F4 and securin) have been proven to be substrates of ubiquitin-specific peptidase 24 (USP24), and relevance has been shown between USP24 and its substrates in samples from clinical lung cancer patients. Silencing USP24 increases the cancer formation by inhibiting cellular apoptosis and increasing cellular proliferation. Epidermal growth factor (EGF) treatment, and the KrasG12D and EGFRL858R mutations decrease USP24 protein stability via EGF- or CDK1-mediated phosphorylation at Ser1616, Ser2047 and Ser2604. Knockdown of USP24 decreases Bax and p300 levels, and reduces Ku70 acetylation, thereby preventing cancer cell apoptosis. In addition, knockdown of USP24 increases cell cycle progression by enhancing the G1–S transition and metaphase–anaphase transition. The molecular mechanism involves a decrease in the USP24 level, which reduces the expression of E2F4 and its partner TFDP1, and thus increases the G1/S transition. In conclusion, the USP24 level was decreased during the early stage of cancer and the mitotic stage of the cell cycle to regulate its substrates p300, Bax, E2F4 and securin, resulting in decreased cell apoptosis and increased cell cycle progression and, thus, cancer formation.
Collapse
|
15
|
Liu X, Hernandez N, Kisselev S, Floratos A, Sawle A, Ionita-Laza I, Ottman R, Louis ED, Clark LN. Identification of candidate genes for familial early-onset essential tremor. Eur J Hum Genet 2016; 24:1009-15. [PMID: 26508575 PMCID: PMC5070884 DOI: 10.1038/ejhg.2015.228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase 3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum), neurons and endothelial cells, and is one of three enzymes that converts l-arginine to the neurotransmitter NO. In one family, a heterozygous variant, c.46G>A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an unaffected family member; and in a second family, a heterozygous variant, c.164C>T (p.(Pro55Leu)), was identified in three affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid (GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone.
Collapse
Affiliation(s)
- Xinmin Liu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Sergey Kisselev
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aris Floratos
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Ashley Sawle
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ruth Ottman
- G.H Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Chang KH, Lee-Chen GJ, Wu YR, Chen YJ, Lin JL, Li M, Chen IC, Lo YS, Wu HC, Chen CM. Impairment of proteasome and anti-oxidative pathways in the induced pluripotent stem cell model for sporadic Parkinson's disease. Parkinsonism Relat Disord 2016; 24:81-8. [DOI: 10.1016/j.parkreldis.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
|
17
|
Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene 2015; 35:3669-80. [PMID: 26568301 DOI: 10.1038/onc.2015.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Ubiquitin is a critical modifier regulating the degradation and function of its target proteins during posttranslational modification. Here we found that ubiquitin-specific peptidase 24 (USP24) is highly expressed in cell lines with enhanced malignancy and in late-stage lung cancer clinical samples. Studying single-nucleotide polymorphisms (SNPs) of USP24 using genomic DNA of lung cancer patients revealed an increase in SNP 7656C/T. When using RNA specimens instead of the genomic DNA of lung cancer patients, we found significant increases in the ratios of variants 930C/T and 7656T/C, suggesting that variants at these two sites are not only caused by the SNP of DNA but also by the RNA editing. USP24-930T and USP24-7656C increase USP24 expression levels by increasing RNA stability. Knocking down USP24 increased Suv39h1 level through a decrease in mouse double-minute 2 homolog levels, thus enhancing lysine-9 methylation of histone H3, and resulting in the prevention of lung cancer malignancy. In conclusion, as USP24 variant analysis revealed a higher ratio of variants in blood specimens of lung cancer patients than that in normal individuals, USP24-930T and USP24-7656C might be useful as diagnostic markers for cancer detection.
Collapse
|
18
|
Zhu R, Zhu Y, Liu X, He Z. UCH-L1 S18Y Variant and Risk of Parkinson's Disease in Asian Populations: An Updated Meta-Analysis. NEURODEGENER DIS 2014; 14:194-203. [DOI: 10.1159/000367995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
|
19
|
Association between ubiquitin carboxy-terminal hydrolase-L1 S18Y variant and risk of Parkinson's disease: the impact of ethnicity and onset age. Neurol Sci 2014; 36:179-88. [PMID: 25370916 DOI: 10.1007/s10072-014-1987-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023]
Abstract
The Ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) is a candidate risk gene for Parkinson' disease (PD), and a function SNP (rs5030732) in the coding region of this gene has been studied for the association with the disease extensively among worldwide populations, but the results were inconsistent and controversial. Here, to estimate the association between UCHL1 S18Y polymorphism and risk of PD in general population, we conducted a systematic meta-analysis by combining all available case-control subjects in Asian, European, and American populations, with a total of 7742 PD cases and 8850 healthy controls, and the pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for UCHL1 S18Y polymorphism and PD were calculated using the Mantel-Haenszel method with a fixed- or random-effects model. Subgroup analysis was also performed in different onset age-matched groups. Among high-quality studies, UCHL1 S18Y polymorphism was moderately associated with the risk of PD (allele contrasts, OR = 1.063, 95% CI 1.008-1.122; p = 0.024; regressive genetic model, OR = 1.078, 95% CI 1.005-1.157; p = 0.035). When stratifying for ethnicity, none association were observed in subgroups. Analysis of early-onset PD (EOPD) and late-onset PD (LOPD) revealed that the polymorphism was not associated with the risk of PD. In conclusion, our meta-analysis suggests that UCHL1 S18Y polymorphism is moderately associated with susceptibility to PD, and more studies are needed to confirm our conclusion.
Collapse
|
20
|
Lack of association between UCHL1 S18Y gene polymorphism and Parkinson’s disease in the Asian population: a meta-analysis. Neurol Sci 2014; 35:1867-76. [DOI: 10.1007/s10072-014-1973-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/29/2014] [Indexed: 01/02/2023]
|
21
|
Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 2013; 128:818-28. [PMID: 24286619 DOI: 10.1111/jnc.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023]
Abstract
Impairment of the ubiquitin proteasome pathway is believed to play an important role in the pathogenesis of Parkinson's disease. This process is carried out under tight regulation by deubiquitinating enzymes. Genetic linkage studies indicated that the region of the human ubiquitin-specific protease 24 (USP24) gene is significantly correlated with Parkinson's disease. In this study, we cloned a 1648 bp 5' flanking region of the human USP24 gene coding sequence and a series of nested deletions into the pGL3-Basic vector. We analyzed promoter activities of these regions with a luciferase-based reporter assay system. A 64-bp region was identified to contain the transcription initiation site and a minimum promoter sequence for transcriptional activation of the USP24 gene expression. Expression of USP24 is controlled by a TATA-box-less promoter with several putative cis-acting elements. Transcriptional activation and gel-shift assay demonstrated that the USP24 gene promoter contains a functional NFκB-binding site. Over-expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor-necrosis factor alpha (TNFα) treatment significantly increased the USP24 promoter activity, mRNA expression and protein level in human HEK293 cells, mouse N2a cells and human neuroblastoma SH-SY5Y cells. Deletion and mutation of the binding site abolished the regulatory effect of NFκB on human USP24 gene transcription. These results suggested that USP24 expression is tightly regulated at its transcription level and NFκB plays an important role in this process.
Collapse
Affiliation(s)
- Ke Wang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Zhao B, Song W, Chen YP, Huang R, Chen K, Cao B, Yang Y, Shang HF. Association analysis of single-nucleotide polymorphisms of USP24 and USP40 with Parkinson's disease in the Han Chinese population. Eur Neurol 2012; 68:181-4. [PMID: 22923019 DOI: 10.1159/000339641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/15/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND The ubiquitin-proteasomal pathway has been found to be involved in the etiology of Parkinson's disease (PD). Numerous single-nucleotide polymorphisms (SNPs) in both USP24 and USP40 genes have been linked to increased risks of late-onset PD, but the association has not been confirmed in the residents of mainland China, especially the Han population. METHODS We included 378 unrelated Han Chinese PD patients from south west China and 274 unrelated Han Chinese healthy controls from the same region. Multiple SNPs, including rs13312, rs1165226, rs487230, and rs287235 of USP24 and rs1048603 of USP40, were genotyped using Sequenom iPLEX Assay technology. RESULTS No significant differences in the genotype frequencies and minor allele frequency of all SNPs were observed between the PD and control groups, between the early-onset PD and control groups, between the late-onset PD and control groups, and between the early-onset PD and late-onset PD groups. CONCLUSION The present study is the first to report a lack of association between SNPs of USP24 and USP40 and PD in Han Chinese patients. Other association studies with larger numbers of participants are necessary to confirm the present findings.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. UCHL1 S18Y variant is a risk factor for Parkinson's disease in Japan. BMC Neurol 2012; 12:62. [PMID: 22839974 PMCID: PMC3488468 DOI: 10.1186/1471-2377-12-62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background A recent meta-analysis on the UCHL1 S18Y variant and Parkinson’s disease (PD) showed a significant inverse association between the Y allele and PD; the individual studies included in that meta-analysis, however, have produced conflicting results. We examined the relationship between UCHL1 S18Y single nucleotide polymorphism (SNP) and sporadic PD in Japan. Methods Included were 229 cases within 6 years of onset of PD, defined according to the UK PD Society Brain Bank clinical diagnostic criteria. Controls were 357 inpatients and outpatients without neurodegenerative disease. Adjustment was made for sex, age, region of residence, smoking, and caffeine intake. Results Compared with subjects with the CC or CA genotype of UCHL1 S18Y SNP, those with the AA genotype had a significantly increased risk of sporadic PD: the adjusted OR was 1.57 (95 % CI: 1.06 − 2.31). Compared with subjects with the CC or CA genotype of UCHL1 S18Y and the CC or CT genotype of SNCA SNP rs356220, those with the AA genotype of UCHL1 S18Y and the TT genotype of SNP rs356220 had a significantly increased risk of sporadic PD; the interaction, however, was not significant. Our previous investigation found significant inverse relationships between smoking and caffeine intake and PD in this population. There were no significant interactions between UCHL1 S18Y and smoking or caffeine intake affecting sporadic PD. Conclusions This study reveals that the UCHL1 S18Y variant is a risk factor for sporadic PD. We could not find evidence for interactions affecting sporadic PD between UCHL1 S18Y and SNCA SNP rs356220, smoking, or caffeine intake.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Tian QB, Li QK, Wang JM, Wang CN, Liu T, Liu DW, Wang MW. Lysine 92 amino acid residue of USP46, a gene associated with 'behavioral despair' in mice, influences the deubiquitinating enzyme activity. PLoS One 2011; 6:e26297. [PMID: 22043315 PMCID: PMC3197135 DOI: 10.1371/journal.pone.0026297] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by their activity of cleaving ubiquitin from specific protein substrates. Ubiquitin-Specific Protease 46 (USP46) has recently been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with a lysine codon (Lys 92) deletion in USP46 exhibited loss of ‘behavioral despair’ under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. However, whether this deletion affects enzyme activity is unknown. Here we show that USP46 has deubiquitinating enzyme activity detected by USP cleavage assay using GST-Ub52 as a model substrate. Interestingly, compared to wild type, the Lys 92 deletion mutant resulted in a decreased deubiquitinating enzyme activity of 27.04%. We also determined the relative expression levels of Usp46 in rat tissues using real-time RT-PCR. Usp46 mRNA was expressed in various tissues examined including brain, with the highest expression in spleen. In addition, like rat USP46, both human and mouse USP46 are active toward to the model substrate, indicating the USP cleavage assay is a simple method for testing the deubiquitinating enzyme activity of USP46. These results suggest that the Lys 92 deletion of USP46 could influence enzyme activity and thereby provide a molecular clue how the enzyme regulating the pathogenesis of mental illnesses.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qing-Bao Tian
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| | - Qing-Kai Li
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Jian-Min Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chao-Nan Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Tian Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Dian-Wu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ming-Wei Wang
- The First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
25
|
Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson's disease. PLoS One 2011; 6:e25443. [PMID: 22003392 PMCID: PMC3189215 DOI: 10.1371/journal.pone.0025443] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson's disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD, we conducted miRNA expression profiling in peripheral blood mononuclear cells (PBMCs) of 19 patients and 13 controls using microarrays. We found 18 miRNAs differentially expressed, and pathway analysis of 662 predicted target genes of 11 of these miRNAs revealed an over-representation in pathways previously linked to PD as well as novel pathways. To narrow down the genes for further investigations, we undertook a parallel approach using chromatin immunoprecipitation-sequencing (ChIP-seq) analysis to uncover genome-wide interactions of α-synuclein, a molecule with a central role in both monogenic and idiopathic PD. Convergence of ChIP-seq and miRNomics data highlighted the glycosphingolipid biosynthesis and the ubiquitin proteasome system as key players in PD. We then tested the association of target genes belonging to these pathways with PD risk, and identified nine SNPs in USP37 consistently associated with PD susceptibility in three genome-wide association studies (GWAS) datasets (0.46≤OR≤0.63) and highly significant in the meta-dataset (3.36×10⁻⁴<p <1.94×10⁻³). A SNP in ST8SIA4 was also highly associated with PD (p = 6.15×10⁻³) in the meta-dataset. These findings suggest that several miRNAs may act as regulators of both known and novel biological processes leading to idiopathic PD.
Collapse
|