1
|
Dave A, Park EJ, Piya S, Pezzuto JM. Long-Term Dietary Consumption of Grapes Alters Phenotypic Expression in Skeletal Muscle of Aged Male and Female Mice. Foods 2025; 14:695. [PMID: 40002138 PMCID: PMC11854663 DOI: 10.3390/foods14040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background: Nutrigenomics investigates how diet influences gene expression and how genetic variation impacts dietary responses. Grapes, rich in phytochemicals, exhibit potential disease-preventive properties through nutrigenomic mechanisms rather than direct chemical interactions. This study aimed to explore the modulation of gene expression in muscle tissue resulting from long-term grape consumption. (2) Methods: A mouse model was employed to assess gene expression in the skeletal muscles of males and females fed a grape-enriched diet versus a bland diet over 2.5 years. Heatmaps and principal component analyses were performed to identify patterns, and pathway analyses using KEGG, GO, and Reactome were conducted. (3) Results: Significant sex-specific gene expression changes were observed, with female phenotypes showing greater alterations and converging toward male-like characteristics. Twenty-five differentially expressed genes associated with muscle health were identified. Up-regulated genes such as Ahsg, Alb, Apoa1, and Arg1, and down-regulated genes including Camp, Lcn2, and Irf4, suggest improved muscle function. (4) Conclusions: Long-term grape consumption appears to enhance female muscle traits toward a male-like phenotype, potentially indicating broader health benefits. Further studies and clinical trials are needed to confirm human applicability and the physiological implications of these findings. Nonetheless, this research underscores the role of nutrigenomics in understanding dietary influences on gene expression and sex-specific responses.
Collapse
Affiliation(s)
- Asim Dave
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA;
| | - Eun-Jung Park
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Sumi Piya
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA;
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA
| |
Collapse
|
2
|
Sun W, Yang H, Zhang J, Wei S, Wu Q, Yang J, Cao C, Cui Z, Zheng H, Wang Y. Secretory leukocyte protease inhibitor as a novel predictive biomarker in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1334418. [PMID: 38501106 PMCID: PMC10944902 DOI: 10.3389/fendo.2024.1334418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Background Secretory leukocyte protease inhibitor (SLPI) is a multifunctional protein involved in the chronic inflammatory process, implicated in the pathogenesis of diabetic kidney disease (DKD). However, its potential as a diagnostic and prognostic biomarker of DKD has yet to be evaluated. This study explored the clinical utility of SLPI in the diagnosis and prognosis of renal endpoint events in patients with DKD. Methods A multi-center cross-sectional study comprised of 266 patients with DKD and a predictive cohort study comprised of 120 patients with stage IV DKD conducted between December 2016 and January 2022. The clinical parameters were collected for statistical analysis, a multivariate Cox proportional hazards model was used to evaluate the independent risk factors for renal endpoints. Results Serum SLPI levels gradually increased with DKD progression (p<0.01). A significant correlation was observed between serum SLPI levels and renal function in patients with DKD. The mean follow-up duration in this cohort study was 2.32 ± 1.30 years. Multivariate Cox regression analysis showed SLPI levels≥51.61ng/mL (HR=2.95, 95% CI[1.55, 5.60], p<0.01), 24h urinary protein levels≥3500 mg/24h (HR=3.02, 95% CI[1.66, 5.52], p<0.01), Alb levels<30g/l (HR=2.19, 95% CI[1.12, 4.28], p<0.05), HGB levels<13g/dl (HR=3.18, 95% CI[1.49, 6.80], p<0.01), and urea levels≥7.1 mmol/L (HR=8.27, 95% CI[1.96, 34.93], p<0.01) were the independent risk factors for renal endpoint events in DKD patients. Conclusions Serum SLPI levels increased with DKD progression and were associated with clinical parameters of DKD. Moreover, elevated SLPI levels showed potential prognostic value for renal endpoint events in individuals with DKD. These findings validate the results of previous studies on SLPI in patients with DKD and provide new insights into the role of SLPI as a biomarker for the diagnosis and prognosis of DKD that require validation.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Hanwen Yang
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Proctology, China-Japan Friendship Hospital, Beijing, China
| | - Jiale Zhang
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Shuwu Wei
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoru Wu
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Yang
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Can Cao
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoli Cui
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Contreras-Rodriguez O, Reales-Moreno M, Fernández-Barrès S, Cimpean A, Arnoriaga-Rodríguez M, Puig J, Biarnés C, Motger-Albertí A, Cano M, Fernández-Real JM. Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation. J Affect Disord 2023; 335:340-348. [PMID: 37207947 DOI: 10.1016/j.jad.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The consumption of ultra-processed foods and drinks (UPF) has been associated with depression and inflammation and preclinical studies showed that some UPF components disrupt the amygdala-hippocampal complex. We combine diet, clinical and brain imaging data to investigate the relationship between the UPF consumption, depressive symptoms, and brain volumes in humans, considering interactions with obesity, and the mediation effect of inflammation biomarkers. METHODS One-hundred fifty-two adults underwent diet, depressive symptoms, anatomic magnetic resonance imaging assessments and laboratory tests. Relationships between the % of UPF consumption (in grams) of the total diet, depressive symptoms, and gray matter brain volumes were explored using several adjusted regression models, and in interaction with the presence of obesity. Whether inflammatory biomarkers (i.e., white blood cell count, lipopolysaccharide-binding protein, c-reactive protein) mediate the previous associations was investigated using R mediation package. RESULTS High UPF consumption was associated with higher depressive symptoms in all participants (β = 0.178, CI = 0.008-0.261) and in those with obesity (β = 0.214, CI = -0.004-0.333). Higher consumption was also associated with lower volumes in the posterior cingulate cortex and the left amygdala, which in the participants with obesity also encompassed the left ventral putamen and the dorsal frontal cortex. White blood count levels mediated the association between UPF consumption and depressive symptoms (p = 0.022). LIMITATIONS The present study precludes any causal conclusions. CONCLUSIONS UPF consumption is associated with depressive symptoms and lower volumes within the mesocorticolimbic brain network implicated in reward processes and conflict monitoring. Associations were partially dependent on obesity and white blood cell count.
Collapse
Affiliation(s)
- Oren Contreras-Rodriguez
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain.
| | - Marta Reales-Moreno
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | | | - Anna Cimpean
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - Anna Motger-Albertí
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Marta Cano
- Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain.
| |
Collapse
|
4
|
Yang S, Cao C, Xie Z, Zhou Z. Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:295. [PMID: 32355739 PMCID: PMC7186604 DOI: 10.21037/atm.2020.02.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Type 1 diabetes is an autoimmune disease strongly related to genetic factors. Although studies on T1D susceptibility genes have achieved great progress, the molecular mechanism of T1D remains to be explained. Methods To explore the underlying mechanisms of T1D, bioinformatic analysis based on a microarray database was used to determine the key biomarkers of T1D as well as their biofunctions and interactions. The microarray database GSE55100 was downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were processed by packages in R Software. The database for Annotation, Visualization, and Integrated Discovery (DAVID, version 6.8) was used to conduct gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction network was analyzed with the Search Tool for the Retrieval of Interacting Genes (STRING), and the module analysis was performed using Cytoscape. Results Seventy-eight DEGs and 13 hub genes were identified. The biofunctions and pathways of these DEGs were enriched in immune response, extracellular exosome, cytokine activity and antigen processing and presentation. Thirteen DEGs with MCODE score ≥2 were selected as hub genes including MMP9, ARG1, CAMP, CHI3L1, CRISP3, SLPI, LCN2, PGLYRP1, LTF, RETN, CEACAM1, CEACAM8 and MS4A3. Conclusions The identification and analyses of the DEGs and hub genes from database GSE55100 provide novel prospectives of the pathogenesis of T1D.
Collapse
Affiliation(s)
- Shuting Yang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China
| | - Chuqing Cao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China
| | - Zhiguo Xie
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China
| |
Collapse
|
5
|
Averdunk L, Fitzner C, Levkovich T, Leaf DE, Sobotta M, Vieten J, Ochi A, Moeckel G, Marx G, Stoppe C. Secretory Leukocyte Protease Inhibitor (SLPI)-A Novel Predictive Biomarker of Acute Kidney Injury after Cardiac Surgery: A Prospective Observational Study. J Clin Med 2019; 8:jcm8111931. [PMID: 31717603 PMCID: PMC6912354 DOI: 10.3390/jcm8111931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most frequent complications after cardiac surgery and is associated with poor outcomes. Biomarkers of AKI are crucial for the early diagnosis of this condition. Secretory leukocyte protease inhibitor (SLPI) is an alarm anti-protease that has been implicated in the pathogenesis of AKI but has not yet been studied as a diagnostic biomarker of AKI. Using two independent cohorts (development cohort (DC), n = 60; validation cohort (VC), n = 148), we investigated the performance of SLPI as a diagnostic marker of AKI after cardiac surgery. Serum and urinary levels of SLPI were quantified by ELISA. SLPI was significantly elevated in AKI patients compared with non-AKI patients (6 h, DC: 102.1 vs. 64.9 ng/mL, p < 0.001). The area under the receiver operating characteristic curve of serum SLPI 6 h after surgery was 0.87 ((0.76–0.97); DC). The addition of SLPI to standard clinical predictors significantly improved the predictive accuracy of AKI (24 h, VC: odds ratio (OR) = 3.91 (1.44–12.13)). In a subgroup, the increase in serum SLPI was evident before AKI was diagnosed on the basis of serum creatinine or urine output (24 h, VC: OR = 4.89 (1.54–19.92)). In this study, SLPI was identified as a novel candidate biomarker for the early diagnosis of AKI after cardiac surgery.
Collapse
Affiliation(s)
- Luisa Averdunk
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christina Fitzner
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
| | - Tatjana Levkovich
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
| | - David E. Leaf
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Sobotta
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
| | - Jil Vieten
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
| | - Akinobu Ochi
- Department of Nephropathology, Yale University School of Medicine, New Haven, CT 06510, USA; (A.O.)
| | - Gilbert Moeckel
- Department of Nephropathology, Yale University School of Medicine, New Haven, CT 06510, USA; (A.O.)
| | - Gernot Marx
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
| | - Christian Stoppe
- Department of Intensive Care Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.A.); (C.F.); (T.L.); (M.S.); (J.V.); (G.M.)
- Correspondence: ; Tel.: +49-241-8036575; Fax: +49-241-8082406
| |
Collapse
|
6
|
Laaksonen J, Taipale T, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Hutri-Kähönen N, Rönnemaa T, Juonala M, Viikari J, Kähönen M, Raitakari O, Lehtimäki T. Blood pathway analyses reveal differences between prediabetic subjects with or without dyslipidaemia. The Cardiovascular Risk in Young Finns Study. Diabetes Metab Res Rev 2017; 33. [PMID: 28609607 DOI: 10.1002/dmrr.2914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes often occurs together with dyslipidaemia, which is paradoxically treated with statins predisposing to type 2 diabetes mellitus. We examined peripheral blood pathway profiles in prediabetic subjects with (PRD ) and without dyslipidaemia (PR0 ) and compared these to nonprediabetic controls without dyslipidaemia (C0 ). METHODS The participants were from the Cardiovascular Risk in Young Finns Study, including 1240 subjects aged 34 to 49 years. Genome-wide expression data of peripheral blood and gene set enrichment analysis were used to investigate the differentially expressed genes and enriched pathways between different subtypes of prediabetes. RESULTS Pathways for cholesterol synthesis, interleukin-12-mediated signalling events, and downstream signalling in naïve CD8+ T-cells were upregulated in the PR0 group in comparison with controls (C0 ). The upregulation of these pathways was independent of waist circumference, blood pressure, smoking status, and insulin. Adjustment for CRP left the CD8+ T-cell signalling and interleukin-12-mediated signalling event pathway upregulated. The cholesterol synthesis pathway was also upregulated when all prediabetic subjects (PR0 and PRD ) were compared with the nonprediabetic control group. No pathways were upregulated or downregulated when the PRD group was compared with the C0 group. Five genes in the PR0 group and 1 in the PRD group were significantly differentially expressed in comparison with the C0 group. CONCLUSIONS Blood cell gene expression profiles differ significantly between prediabetic subjects with and without dyslipidaemia. Whether this classification may be used in detection of prediabetic individuals at a high risk of cardiovascular complications remains to be examined.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tuukka Taipale
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
7
|
Zhong QQ, Wang X, Li YF, Peng LJ, Jiang ZS. Secretory leukocyte protease inhibitor promising protective roles in obesity-associated atherosclerosis. Exp Biol Med (Maywood) 2016; 242:250-257. [PMID: 27698252 DOI: 10.1177/1535370216672747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI), a serine protease inhibitor, which was most commonly examined in mucosal fluids such as saliva, is a versatile molecule and plays non-redundant roles. In addition to its anti-protease activity, SLPI has been shown to express anti-bacterial, anti-viral, anti-fungal, and anti-inflammatory properties as well as participating in innate and adaptive immune responses, most of which has been well documented. Recently, it is reported that SLPI is expressed in adipocytes and adipose tissue where it could play an important feedback role in the resolution of inflammation. Furthermore, circulating SLPI has been shown to correlate with progressive metabolic dysfunction. Moreover, adenoviral gene delivery of elafin and SLPI attenuates nuclear factor-κB-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. This review contributes to unraveling the protective role of SLPI in obesity-related atherosclerosis development, and the potential role in preventing arterial plaque rupture.
Collapse
Affiliation(s)
- Qiao-Qing Zhong
- 1 Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China.,2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China.,3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Xiang Wang
- 3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Yun-Feng Li
- 3 Department of Cardiology, First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Li-Jun Peng
- 2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China.,4 Department of Science and Teaching, Children's Hospital of Hunan Province, Changsha 410007, China
| | - Zhi-Sheng Jiang
- 2 Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Trindade F, Ferreira R, Amado F, Vitorino R. Biofluid proteases profiling in diabetes mellitus. Adv Clin Chem 2015; 69:161-207. [PMID: 25934362 DOI: 10.1016/bs.acc.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The investigation of protease relevance in biologic systems beyond catabolism of proteins and peptides to amino acids has stimulated interest as to their role in the pathogenesis of several disorders including diabetes mellitus (DM). Evaluation of proteases and the assessment of their activity in biofluids are fundamental to elucidate these proteolytic systems in DM and its related complications. In contrast to traditional immunoassay or substrate based approaches that targeted specific proteases and their inhibitors, the field of degradomics has provided a comprehensive approach to study these enzymes. Although the degradome contains over 500 proteases, very few have been associated with DM and its micro- and macrovascular complications. In this paper, we review these proteases and their respective inhibitors with emphasis on DM. It is likely that future research will expand these initial studies and look to develop high throughput automated technologies to identify and characterize biofluid proteases of diagnostic and prognostic value in other pathologies.
Collapse
Affiliation(s)
- Fábio Trindade
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Institute for Research in Biomedicine, iBiMED, Health Sciences Program, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Fujiwara M, Miyoshi M, Sakai S, Nishiokada A, Aoyama-Ishikawa M, Maeshige N, Usami Y, Hamada Y, Takahashi M, Usami M. Lard-based high-fat diet increases secretory leukocyte protease inhibitor expression and attenuates the inflammatory response of acute lung injury in endotoxemic rats. Clin Nutr 2014; 34:997-1009. [PMID: 25466948 DOI: 10.1016/j.clnu.2014.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Acute lung injury (ALI) is less severe in obese than in nonobese patients, but the mechanism is unclear. Secretory leukocyte protease inhibitor (SLPI) is the key anti-inflammatory protein in various lung diseases. We have previously reported changes of the surgical stress in obese rats using lard-based high-fat diet (HFD). The purpose of this study was to elucidate the effect of lard-based HFD on the pathophysiology of lipopolysaccharide (LPS)-induced ALI, and the role of SLPI expression. METHODS Male Wistar rats were fed lard-based HFD (60 kcal% fat) or control diet (CD) for either 4 or 12 weeks and were killed after intraperitoneal LPS injection. Analyses included messenger RNA expression of TNF-α, macrophage inflammatory protein (MIP)-2, inducible nitric oxide synthase (iNOS), IL-10 and SLPI in the lung tissue and bronchoalveolar lavage fluid, and histology of the lungs. RESULTS Rats fed HFD for 12 weeks showed suppression of the lung injury and oxidative stress after LPS injection, as indicated by reduction of pulmonary TNF-α, MIP-2 and iNOS mRNA expression and 8-hydroxy-2'-deoxyguanosine immunostaining. The increased pulmonary SLPI caused by lard was associated with decreased pro-inflammatory cytokines and oxidative stress, which eventually resulted in the prevention of ALI. Those effects of lard on LPS-induced ALI were greater after 12 weeks than after 4 weeks feeding, as indicated by the reduction of TNF-α, MIP-2 and iNOS levels. CONCLUSIONS Feeding lard-based HFD for 12 weeks attenuated LPS-induced ALI with increased pulmonary SLPI expression in rats.
Collapse
Affiliation(s)
- Mayu Fujiwara
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Shota Sakai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Aya Nishiokada
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yu Usami
- Clinical Laboratory, Osaka University Dental Hospital, Osaka, Japan
| | - Yasuhiro Hamada
- Departments of Therapeutic Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Michiko Takahashi
- Department of Nutrition, Kobe University Hospital, Kobe University School of Medicine, Kobe, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Nutrition, Kobe University Hospital, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
10
|
Moreno-Navarrete JM, Fernández-Real JM. The possible role of antimicrobial proteins in obesity-associated immunologic alterations. Expert Rev Clin Immunol 2014; 10:855-66. [DOI: 10.1586/1744666x.2014.911088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Hyvärinen K, Tuomainen AM, Laitinen S, Alfthan G, Salminen I, Leinonen M, Saikku P, Kovanen PT, Jauhiainen M, Pussinen PJ. The effect of proatherogenic pathogens on adipose tissue transcriptome and fatty acid distribution in apolipoprotein E-deficient mice. BMC Genomics 2013; 14:709. [PMID: 24131481 PMCID: PMC4008135 DOI: 10.1186/1471-2164-14-709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022] Open
Abstract
Background Chronic infections have been demonstrated to maintain low-grade systemic inflammation and associate with atherosclerosis. We studied the inflammation- and lipid homeostasis-related effects of Aggregatibacter actinomycetemcomitans (Aa) and Chlamydia pneumoniae (Cpn) infections on the epididymal and inguinal adipose tissue (AT) transcriptomes and fatty acid distribution in apolipoprotein (apo) E-deficient mice. Chow-fed apoE-deficient mice were exposed to 1) chronic intranasal infection with C. pneumoniae (Cpn group), 2) recurrent intravenous infection with A. actinomycetemcomitans (Aa group), 3) a combination of both types of infection (Cpn + Aa group), or 4) infection with the vehicle (control group). Epididymal and inguinal AT gene expression was analyzed using an Illumina Mouse WG-6 v2.0 platform and quantitative PCR (QPCR). Microarray data were analyzed using Gene Ontology enrichment analysis. AT fatty acid analysis was performed using gas–liquid chromatography. Results The transcriptomics data revealed significant enrichment in inflammation-associated biological pathways in both AT depots derived from the Aa and Cpn + Aa treated mice compared with the control group. The proportion of saturated fatty acids was higher in the inguinal AT in Aa (p = 0.027) and Cpn + Aa (p = 0.009) groups and in the epididymal AT in Aa group (p = 0.003). The proportion of polyunsaturated fatty acids was significantly lower among all Aa-infected groups in both depots. Chronic Cpn infection displayed only minor effects on transcriptomics and fatty acids of the AT depots. Conclusions Systemic infection with A. actinomycetemcomitans activates inflammation-related biological pathways and modulates cellular lipid homeostasis. The adverse changes in adipose tissues during chronic infection may promote atherosclerosis.
Collapse
Affiliation(s)
- Kati Hyvärinen
- Institute of Dentistry, University of Helsinki, P,O, Box 63, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ortega FJ, Sabater M, Moreno-Navarrete JM, Pueyo N, Botas P, Delgado E, Ricart W, Frühbeck G, Fernández-Real JM. Serum and urinary concentrations of calprotectin as markers of insulin resistance and type 2 diabetes. Eur J Endocrinol 2012; 167:569-78. [PMID: 22822112 DOI: 10.1530/eje-12-0374] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Increased circulating calprotectin has been reported in obese subjects but not in association with measures of insulin resistance and type 2 diabetes (T2D). The main aim of this study was to determine whether calprotectins in plasma and urine are associated with insulin resistance. DESIGN We performed both cross-sectional and longitudinal (diet-induced weight loss) studies. METHODS Circulating calprotectin concentrations (ELISA), other inflammatory markers, homeostasis model assessment of insulin resistance (HOMA-IR), and parameters of glucose and lipid metabolism were evaluated in 298 subjects (185 with normal (NGT) and 62 with impaired (IGT) glucose tolerance and 51 T2D subjects). Calprotectin was also evaluated in urine samples from 71 participants (50 NGT and 21 subjects with IGT). Insulin sensitivity (S(I), Minimal Model) was determined in a subset of 156 subjects, and the effects of weight loss were investigated in an independent cohort of obese subjects (n=19). RESULTS Circulating calprotectin was significantly increased in IGT-T2D (independently of BMI) and positively associated with HOMA-IR, obesity measures, inflammatory markers, and parameters of glucose and lipid metabolism. Similar findings were reported for calprotectin concentrations in urine. In the subset of subjects, the association of calprotectin with S(I) was independent of BMI and age. In fact, S(I) together with C-reactive protein contributed to 27.4% of calprotectin variance after controlling for age and blood neutrophils count. Otherwise, weight loss led to decreased circulating calprotectin in parallel to fasting glucose and HOMA-IR. CONCLUSION These findings suggest that circulating and urinary concentrations of calprotectin are linked to chronic low-grade inflammation and insulin resistance beyond obesity.
Collapse
Affiliation(s)
- Francisco J Ortega
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hoggard N, Cruickshank M, Moar KM, Bashir S, Mayer CD. Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue. Obesity (Silver Spring) 2012; 20:1158-67. [PMID: 22286531 DOI: 10.1038/oby.2012.14] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The objective of this study was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays (Affymetrix, Santa Clara, CA) in subcutaneous and omental adipose tissue in two independent experiments (n = 5 and n = 3 independent subjects; n = 16 arrays in total, 2 for each subject). Predictive bioinformatic algorithms were employed to identify secreted proteins. Microarray analysis identified 22 gene probe sets whose expression was significantly different with a fold change (FC) greater than 5 in expression in both experiments between omental and subcutaneous adipose tissue. Using bioinformatic predictive programs 11 of these 22 probe sets potentially coded for secreted proteins. Pathway network analysis of the secreted proteins showed that three of the proteins are part of a common pathway network. These proteins gremlin 1 (GREM1), pleiotrophin (PTN), and secretory leukocyte peptidase inhibitor (SLPI) are expressed respectively 43×, 23×, and 5× in omental adipose tissue relative to subcutaneous adipose tissue as determined by real-time PCR. The presence of GREM1, PTN, and SLPI protein in human adipose tissue was confirmed by western blotting. All three proteins are expressed in the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell line. The expression of GREM1, PTN, and SLPI changed with the differentiation of the preadipocytes into mature adipocytes. Gene expression coupled with predictive bioinformatic algorithms have identified several genes coding for secreted proteins which are expressed differently in omental adipose tissue compared to subcutaneous adipose tissue proving a valid alternative approach to help further define the adipocyte secretome.
Collapse
Affiliation(s)
- Nigel Hoggard
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen Centre for Energy Regulation and Obesity (ACERO), Aberdeen, Scotland.
| | | | | | | | | |
Collapse
|