1
|
Sakaguchi K, Naito T, Hoshikawa K, Miyadera Y, Tanaka H, Nakatsugawa E, Furuta T, Sugimoto K, Kawakami J. Characterization of plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders. Drug Metab Pharmacokinet 2024; 58:101027. [PMID: 39428315 DOI: 10.1016/j.dmpk.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Factors that determine clinical responses to vonoprazan remain unknown. This study aimed to characterize plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders. Fifty-three patients who were receiving vonoprazan for at least 3 days were enrolled. Blood samples for determination of plasma vonoprazan and its metabolite (ODA-VP) were obtained. Plasma 4β-hydroxycholesterol (4β-OHC), CYP3A5 and ABCB1 genotypes, and plasma gastrin were determined. CYP3A recognition for vonoprazan was evaluated using recombinant CYP3A proteins. Plasma vonoprazan levels exhibited a large interindividual variation. The absolute plasma concentration of vonoprazan was correlated with its dose-normalized value, and had a positive correlation with the inverse value of its metabolic ratio. A negative correlation was observed between plasma vonoprazan and 4β-OHC levels. The metabolic ratio of vonoprazan was positively correlated with the plasma 4β-OHC level. Genetic variants of CYP3A5 and ABCB1 were not associated with the plasma concentration of vonoprazan and its metabolic ratio. Possible saturated metabolism of vonoprazan to its major metabolite was observed at a therapeutic dose. Although the CYP3A5 genotype did not alter plasma vonoprazan, CYP3A activity based on plasma 4β-OHC partially explained the variation in plasma vonoprazan in patients with digestive system disorders.
Collapse
Affiliation(s)
- Kenta Sakaguchi
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pharmacy, Shinshu University Hospital, Matsumoto, Nagano, Japan.
| | - Kohei Hoshikawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukari Miyadera
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironari Tanaka
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Emi Nakatsugawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Alatorre-Moreno EV, Saldaña-Cruz AM, Pérez-Guerrero EE, Morán-Moguel MC, Contreras-Haro B, López-de La Mora DA, Dávalos-Rodríguez IP, Marín-Medina A, Rivera-Cameras A, Balderas-Peña LMA, Gómez-Ramos JJ, Cortés-Sanabria L, Salazar-Páramo M. Association of CYP3A4-392A/G, CYP3A5-6986A/G, and ABCB1-3435C/T Polymorphisms with Tacrolimus Dose, Serum Concentration, and Biochemical Parameters in Mexican Patients with Kidney Transplant. Genes (Basel) 2024; 15:497. [PMID: 38674430 PMCID: PMC11049954 DOI: 10.3390/genes15040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tacrolimus (TAC) is an immunosuppressant drug that prevents organ rejection after transplantation. This drug is transported from cells via P-glycoprotein (ABCB1) and is a metabolic substrate for cytochrome P450 (CYP) 3A enzymes, particularly CYP3A4 and CYP3A5. Several single-nucleotide polymorphisms (SNPs) have been identified in the genes encoding CYP3A4, CYP3A5, and ABCB1, including CYP3A4-392A/G (rs2740574), CYP3A5 6986A/G (rs776746), and ABCB1 3435C/T (rs1045642). This study aims to evaluate the association among CYP3A4-392A/G, CYP3A5-6986A/G, and ABCB1-3435C/T polymorphisms and TAC, serum concentration, and biochemical parameters that may affect TAC pharmacokinetics in Mexican kidney transplant (KT) patients. METHODS Forty-six kidney transplant recipients (KTR) receiving immunosuppressive treatment with TAC in different combinations were included. CYP3A4, CYP3A5, and ABCB1 gene polymorphisms were genotyped using qPCR TaqMan. Serum TAC concentration (as measured) and intervening variables were assessed. Logistic regression analyses were performed at baseline and after one month to assess the extent of the association between the polymorphisms, intervening variables, and TAC concentration. RESULTS The GG genotype of CYP3A5-6986 A/G polymorphism is associated with TAC pharmacokinetic variability OR 4.35 (95%CI: 1.13-21.9; p = 0.0458) at one month of evolution; in multivariate logistic regression, CYP3A5-6986GG genotype OR 9.32 (95%CI: 1.54-93.08; p = 0.028) and the use of medications or drugs that increase serum TAC concentration OR 9.52 (95%CI: 1.79-88.23; p = 0.018) were strongly associated with TAC pharmacokinetic variability. CONCLUSION The findings of this study of the Mexican population showed that CYP3A5-6986 A/G GG genotype is associated with a four-fold increase in the likelihood of encountering a TAC concentration of more than 15 ng/dL. The co-occurrence of the CYP3A5-6986GG genotype and the use of drugs that increase TAC concentration correlates with a nine-fold increased risk of experiencing a TAC at a level above 15 ng/mL. Therefore, these patients have an increased susceptibility to TAC-associated toxicity.
Collapse
Affiliation(s)
- Edith Viridiana Alatorre-Moreno
- Centro Universitario de Ciencias de la Salud, Departamento de Nefrología, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ana Miriam Saldaña-Cruz
- Centro Universitario de Ciencias de la Salud, Departamento de Fisiología, Instituto de Terapéutica Experimental y Clínica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Edsaúl Emilio Pérez-Guerrero
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - María Cristina Morán-Moguel
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.C.M.-M.); (A.M.-M.)
| | - Betsabé Contreras-Haro
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, UIB02, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | | | - Ingrid Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Centro Universitario de Ciencias de la Salud, Instituto Mexicano del Seguro Social, Universidad de Guadalajara; Guadalajara 44340, Mexico; (I.P.D.-R.); (A.R.-C.)
| | - Alejandro Marín-Medina
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.C.M.-M.); (A.M.-M.)
| | - Alicia Rivera-Cameras
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Centro Universitario de Ciencias de la Salud, Instituto Mexicano del Seguro Social, Universidad de Guadalajara; Guadalajara 44340, Mexico; (I.P.D.-R.); (A.R.-C.)
| | - Luz-Ma Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, UIB02, Hospital de Especialidades Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Juan Gómez-Ramos
- Departamento de Urgencias, Hospital General de Zona 89, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Laura Cortés-Sanabria
- Centro Médico Nacional de Occidente, Hospital de Especialidades, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Academia de Inmunología, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
4
|
Wan P, Hou Y, Qiu B, Feng M, Yang T, Luo Y, Xia L, Chen X, Zhang J, Xue F, Xia Q. GRWR Correlates with the Metabolism of Tacrolimus after Pediatric Living Donor Liver Transplantation According to Donor CYP3A5 Polymorphism. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7647754. [PMID: 36349313 PMCID: PMC9637468 DOI: 10.1155/2022/7647754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 09/08/2024]
Abstract
Objectives Tacrolimus is characterized by high pharmacokinetic variability in combination with a narrow therapeutic range. However, influence of donor CYP3A5 genotype and graft-to-recipient body weight ratio (GRWR) on tacrolimus' pharmacokinetics after pediatric living donor liver transplantation (LDLT) remains unclear. Methods A total of 174 LDLT recipients (<6 y) were grouped according to donor CYP3A5 genotypes (nonexpressor (NEX) or expressor (EX)) and GRWR (<3.0% (SS, small-size) or ≥3.0% (LS, large-size)): SS/NEX (n = 40), SS/EX (n = 38), LS/NEX (n = 48), and LS/EX (n = 48). Pharmacokinetics of tacrolimus and clinical outcomes were analyzed. Results The relationships between the concentration-dose ratio and donor CYP3A5 genotypes and graft size were examined 3, 7, 14, and 30 days after the transplantation. Tacrolimus C0 levels varied greatly among groups, although recipients started with the same initial dosage. LS/EX recipients had significantly lower C0 levels in comparison with those of other groups. The use of CYP3A5-EX-grafts and a greater GRWR both resulted in significantly higher TAC dose requirements and lower C/D ratios. However, the significance of GRWR no longer exists 3 months after transplantation. The multivariate generalized linear mixed model analysis showed that donor CYP3A5 genotypes (F = 11.876; P = 0.01) and GRWR (F = 4.631; P = 0.033) were independent impact factors for C/D ratios 3, 7, 14, and 30 days after transplantation. Donor CYP3A5-EX genotype was associated with significantly increasing risks of infectious complications and significantly lower Cylex ATP values. However, no significant difference was observed in acute rejections among 4 groups. Conclusions Monitoring of C0 levels alone is not reliable to guide tacrolimus administration. Donor CYP3A5 and GRWR both significantly affect tacrolimus pharmacokinetics after pediatric LDLT. The use of Cylex ATP tests would be helpful to avoid overimmunosuppression.
Collapse
Affiliation(s)
- Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Hou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xue
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Xuan NT, Hop VQ, Kien TQ, Toan PQ, Thang LV, Binh HT, Van Tran P, Minh HT, Man PT, Cuong HX, Ben NH, Phuong NM, Linh NT, Linh NT, Dung VD, Quyen LTB, Hang DTT, Su HX. Frequencies and Association of CYP3A5 Polymorphism With Tacrolimus Concentration Among Renal Transplant Recipients in Vietnam. Transplant Proc 2022; 54:2140-2146. [PMID: 36085176 DOI: 10.1016/j.transproceed.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND This study aims to investigate the frequencies and association of CYP3A5 polymorphism with tacrolimus concentration among renal transplant recipients in Vietnam. METHODS Sixty-eight kidney transplant recipients were included in this study from the department of nephrology and dialysis, Military Hospital 103. Blood samples were collected for monitoring of tacrolimus levels and determination of CYP3A5 genetic polymorphism. RESULTS A total of 68 patients studied. The CYP3A5*3*3, CYP3A5*1*3, and CYP3A5*1*1 genotypes were detected in 48 (70.6%), 16 (23.5%), and 4 (5.9%), respectively. Tacrolimus concentrations were much lower in CYP3A5 expressors than in CYP3A5 nonexpressors on the first day, month 1, 3, 6, and 12 (5.98 ± 1.05 vs 6.57 ± 1.03, P = .03; 5.79 ± 1.13 vs 6.82 ± 1.05, P < .001; 4.76 ± 1.48 vs 6.73 ± 1.09, P < .001; 4.29 ± 1.64 vs 6.46 ± 1.23, P < .001; 4.20 ± 1.36 vs 6.04 ± 1.26, P < .001), respectively. Notably, the concentration/dose ratio in the CYP3A5 expressors was lower than in CYP3A5 nonexpressors at time points of follow up (P < .001). However, there were no significant differences in the age, sex, HLA mismatch, type of donors, acute rejection, and creatinine levels at time points between group of CYP3A5 expressors and those of CYP3A5 nonexpressors. CONCLUSION In conclusion, this research indicated the significant association of CYP3A5 genetic polymorphism with daily dose and tacrolimus concentrations in renal transplant recipients. This study provided a closer step to individualize the dose of tacrolimus in renal transplant patients in Vietnam.
Collapse
Affiliation(s)
- Nguyen Thanh Xuan
- Department of Internal Medicine, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Vu Quang Hop
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Quy Kien
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Quoc Toan
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Viet Thang
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ha Thanh Binh
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Tran
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Thi Minh
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Thi Man
- Department of Pharmacy, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Hoang Xuan Cuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huu Ben
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Minh Phuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Tung Linh
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thuy Linh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Faculty of Biology, National University of Hanoi, Hanoi, Vietnam
| | - Vu Dinh Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Bao Quyen
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Thi Thu Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Xuan Su
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
6
|
Nakagawa J, Kinjo T, Iizuka M, Ueno K, Tomita H, Niioka T. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol Toxicol 2020; 128:297-304. [PMID: 32920985 DOI: 10.1111/bcpt.13488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Rivaroxaban is excreted from the body via multiple pathways involving glomerular filtration, drug-metabolizing enzymes and transporters. In this study, we aimed to examine the impact of single nucleotide polymorphisms in P-glycoprotein, breast cancer resistance protein, cytochrome P450 (CYP) 3A5 and CYP2J2 on the pharmacokinetics of rivaroxaban. Eighty-six patients with non-valvular atrial fibrillation (NVAF) undergoing AF catheter ablation were enrolled in this study. In these analyses, the dose-adjusted plasma trough concentration ratio (C0h /D) of rivaroxaban was used as the pharmacokinetic index. The median (quartile range) rivaroxaban C0h /D was 3.39 (2.08-5.21) ng/mL/mg (coefficient of variation: 80.5%). The C0h /D did not differ significantly among ABCB1 c.3435C>T, c.2677G>A/T, c.1236C>T, ABCG2 c.421C>A, CYP3A5*3 and CYP2J2*7 genotypes. Stepwise selection multiple linear regression analysis showed that the estimated glomerular filtration rate was the only independent factor influencing the C0h /D of rivaroxaban (R2 = 0.152, P < 0.001). There was a significant correlation between the C0h of rivaroxaban and prothrombin time (PT) (rho = 0.357, P = 0.001). In patients with NVAF, pharmacokinetic genotype tests are unlikely to be useful for prediction of the C0h of rivaroxaban.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Department of Pharmacy, Hirosaki University Hospital, Aomori, Japan
| | - Takahiko Kinjo
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Mei Iizuka
- Department of Pharmacy, Hirosaki University Hospital, Aomori, Japan
| | - Kayo Ueno
- Department of Pharmacy, Hirosaki University Hospital, Aomori, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, Aomori, Japan.,Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
7
|
Shokati T, Hartmann M, Davari B, Klawitter J, Klawitter J, Christians U. Temsirolimus metabolic pathways revisited. Xenobiotica 2019; 50:640-653. [PMID: 31596164 DOI: 10.1080/00498254.2019.1678793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Temsirolimus, a derivative of sirolimus, exhibits potent antitumor properties. It was the goal of this study to identify yet unknown temsirolimus metabolites generated after incubation with human liver microsomes. Previously, 23-hydroxy-, 24-hydroxy, 12-hydroxy, hydroxy-piperidine and 27-O-desmethyl temsirolimus had been described.Metabolite structures were identified using high-resolution mass spectrometry, MS/iontrap (MSn) and comparison of fragmentation patterns of the metabolites with those of temsirolimus and other known sirolimus derivatives. Moreover, enzyme kinetic parameters of temsirolimus metabolite formation as well as the contribution of individual recombinant cytochrome P450 (CYP) enzymes to temsirolimus metabolism were investigated.Human liver microsomes mainly hydroxylated and/or demethylated temsirolimus. The structures of the following metabolites were identified: O-demethylated metabolites: 39-O-desmethyl, 16-O-desmethyl and 27-O-desmethyl temsirolimus; hydroxylated metabolites: hydroxy piperidine temsirolimus, 11-hydroxy, 12-hydroxy, 14-hydroxy, 23-hydroxy, 24-hydroxy, 25-hydroxy, 45/46-hydroxy and 49-hydroxy temsirolimus; demethylated-hydroxylated metabolites: 16-O-desmethyl, 24-hydroxy; 16-O-desmethyl, 23-hydroxy and 16-O-desmethyl 46-hydroxy temsirolimus; didemethylated metabolite: 27,39-O-didesmethyl temsirolimus; and dihydroxylated metabolite: 12,24-dihydroxy temsirolimus. It was confirmed that CYP3A4 represents the predominant enzyme responsible for temsirolimus metabolism. Moreover, CYP3A5 as well as CYP2C8 also showed significant activities especially resulting in the formation of 27-O-desmethyl, 25-hydroxy and hydroxy-piperidine temsirolimus.It is concluded that temsirolimus is metabolized to more than 20 metabolites, not counting metabolism via the sirolimus pathway. Eighteen of these metabolites could be structurally identified using ion trap MSn and high-resolution mass spectrometry. Moreover, the present study showed that, in addition to CYP3A4, metabolism via CYP3A5 and CYP2C8 also represent significant metabolic pathways.
Collapse
Affiliation(s)
- Touraj Shokati
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Roche Diagnostics GmbH, Penzberg, Germany
| | - Marcel Hartmann
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Zentrum für Zahn-, Mund- und Kieferheilkunde, Universität Greifswald, Greifswald, Germany
| | - Baharak Davari
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Velazquez MNR, Parween S, Udhane SS, Pandey AV. Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase. Biochem Biophys Res Commun 2019; 515:133-138. [DOI: 10.1016/j.bbrc.2019.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/14/2023]
|
9
|
Ou B, Liu Y, Zhang T, Sun Y, Chen J, Peng Z. TLR9 rs352139 Genetic Variant Promotes Tacrolimus Elimination in Chinese Liver Transplant Patients During the Early Posttransplantation Period. Pharmacotherapy 2019; 39:67-76. [PMID: 30537010 DOI: 10.1002/phar.2204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND There are limited markers that could facilitate individualized tacrolimus treatment in the early posttransplantation period. Genetic factors have been found to play critical roles in determining tacrolimus pharmacokinetics. OBJECTIVE We aimed to examine the association of donor and recipient Toll-like receptor (TLR) polymorphisms with tacrolimus elimination and the potential mechanism for TLR gene polymorphism-mediated tacrolimus metabolism. METHODS Two independent cohorts including 297 patients receiving liver transplantation (LT) were enrolled in this study (cohort A was composed of 200 patients; cohort B included 97 patients and served as a validation set). Toll-like receptors polymorphisms were genotyped using TaqMan single nucleotide polymorphisms (SNPs) assays. The protein expressions were detected by Western blotting. The metabolism assay was used to quantify tacrolimus elimination. The activity of nuclear factor-kB (NF-kB) was evaluated by luciferase reporter assay. RESULTS Tacrolimus dose-adjusted trough blood concentrations (C/D) ratios were significantly lower for donor TLR9 rs352139 AG/GG carriers than AA carriers at weeks 1, 2, and 3 after LT. In multivariate analysis, donor and recipient CYP3A5 rs776746 and donor TLR9 rs352139 were independent predictors of tacrolimus C/D ratios in the early period after transplantation in both cohorts. When investigating the combined effects of donor CYP3A5 rs776746 and donor TLR9 rs352139 genotypes, the C/D ratios were remarkably significant at all time points during the first month after LT within the four groups. Furthermore, CYP3A5 mRNA expression in liver tissue was significantly higher for AG/GG patients than AA carriers after LT. In addition, we demonstrated that the TLR9 rs352139 genetic variant promotes tacrolimus metabolism of liver cells via upregulation of CYP3A5, which is dependent on the repression of NF-κB/pregnane X receptor (PXR) signaling. CONCLUSIONS Donor TLR9 rs352139 genetic variant facilitated tacrolimus elimination during the early stage after LT in Chinese patients, which might be related to the upregulation of CYP3A5 enzyme via the NF-kB/PXR signaling pathway.
Collapse
Affiliation(s)
- Baochi Ou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yahuang Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Daly AK. Pharmacogenetics: a general review on progress to date. Br Med Bull 2017; 124:65-79. [PMID: 29040422 DOI: 10.1093/bmb/ldx035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pharmacogenetics is not a new subject area but its relevance to drug prescribing has become clearer in recent years due to developments in gene cloning and DNA genotyping and sequencing. SOURCES OF DATA There is a very extensive published literature concerned with a variety of different genes and drugs. AREAS OF AGREEMENT There is general agreement that pharmacogenetic testing is essential for the safe use of drugs such as the thiopurines and abacavir. AREAS OF CONTROVERSY Whether pharmacogenetic testing should be applied more widely including to the prescription of certain drugs such as warfarin and clopidogrel where the overall benefit is less clear remains controversial. GROWING POINTS Personal genotype information is increasingly being made available directly to the consumer. This is likely to increase demand for personalized prescription and mean that prescribers need to take pharmacogenetic information into account. Projects such as 100 000 genomes are providing complete genome sequences that can form part of a patient medical record. This information will be of great value in personalized prescribing. AREAS TIMELY FOR DEVELOPING RESEARCH Development of new drugs targeting particular genetic risk factors for disease. These could be prescribed to those with an at risk genotype.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
11
|
Modification of single-nucleotide polymorphism in a fully humanized CYP3A mouse by genome editing technology. Sci Rep 2017; 7:15189. [PMID: 29123154 PMCID: PMC5680201 DOI: 10.1038/s41598-017-15033-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/19/2017] [Indexed: 12/02/2022] Open
Abstract
Cytochrome P450, family 3, subfamily A (CYP3A) enzymes metabolize approximately 50% of commercially available drugs. Recently, we developed fully humanized transchromosomic (Tc) CYP3A mice with the CYP3A cluster including CYP3A4, CYP3A5, CYP3A7, and CYP3A43. Our humanized CYP3A mice have the CYP3A5*3 (g.6986G) allele, resulting in the almost absence of CYP3A5 protein expression in the liver and intestine. To produce model mice for predicting CYP3A5′s contribution to pharmacokinetics, we performed a single-nucleotide polymorphism (SNP) modification of CYP3A5 (g.6986G to A, *3 to *1) on the CYP3A cluster using genome editing in both mouse ES cells and fertilized eggs, and produced humanized CYP3A5*1 mice recapitulating the CYP3A5*1 carrier phenotype in humans. The humanized CYP3A mouse with CYP3A5*1 is the first Tc mouse for predicting the SNP effect on pharmacokinetics in humans. The combination of Tc technology and genome editing enables the production of useful humanized models that reflect humans with different SNPs.
Collapse
|
12
|
Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S80-92. [PMID: 26418704 DOI: 10.1097/ftd.0000000000000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to the urgent need for new reliable biomarkers to complement the guidance of the immunosuppressive therapy, a huge number of biomarker candidates to be implemented in clinical practice have been introduced to the transplant community. This includes a diverse range of molecules with very different molecular weights, chemical and physical properties, ex vivo stabilities, in vivo kinetic behaviors, and levels of similarity to other molecules, etc. In addition, a large body of different analytical techniques and assay protocols can be used to measure biomarkers. Sometimes, a complex software-based data evaluation is a prerequisite for appropriate interpretation of the results and for their reporting. Although some analytical procedures are of great value for research purposes, they may be too complex for implementation in a clinical setting. Whereas the proof of "fitness for purpose" is appropriate for validation of biomarker assays used in exploratory drug development studies, a higher level of analytical validation must be achieved and eventually advanced analytical performance might be necessary before diagnostic application in transplantation medicine. A high level of consistency of results between laboratories and between methods (if applicable) should be obtained and maintained to make biomarkers effective instruments in support of therapeutic decisions. This overview focuses on preanalytical and analytical aspects to be considered for the implementation of new biomarkers for adjusting immunosuppression in a clinical setting and highlights critical points to be addressed on the way to make them suitable as diagnostic tools. These include but are not limited to appropriate method validation, standardization, education, automation, and commercialization.
Collapse
|
13
|
Fernández-Santander A, Novillo A, Gaibar M, Romero-Lorca A, Moral P, Sánchez-Cuenca D, Amir N, Chaabani H, Harich N, Esteban ME. Cytochrome and sulfotransferase gene variation in north African populations. Pharmacogenomics 2016; 17:1415-23. [PMID: 27471773 DOI: 10.2217/pgs-2016-0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To describe the diversity of four cytochrome and four sulfotransferase polymorphisms in six north African samples. Scarce data have been compiled for these samples despite the rich genetic background of north African populations. MATERIALS & METHODS CYP3A4*1B, CYP3A4*17, CYP3A4*3, CYP3A5*3, SULT1A1*2, SULT1A2*2, SULT1A2*3 and SULT1E1*2 polymorphisms were explored in 556 individuals from Morocco, Algeria, Tunisia and Libya. RESULTS Allele frequencies in our samples largely exceeded the variation ranges described for European populations, especially for CYP3A4*1B, SULT1A1*2 and SULT1A2*3. CONCLUSION North African populations are heterogeneous, genetically diverse and show a considerable sub-Saharan African contribution for markers associated with increased risk of prostate cancer and with differential drug metabolism.
Collapse
Affiliation(s)
| | - Apolonia Novillo
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - María Gaibar
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Alicia Romero-Lorca
- Basic Biomedical Sciences Department, Universidad Europea de Madrid, Madrid, Spain
| | - Pedro Moral
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - David Sánchez-Cuenca
- Departamento de Genética, Antropología Física y Fisiología Animal (UPV/EHU), Leioa, Spain
| | - Nadir Amir
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
| | - Hassen Chaabani
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Nourdin Harich
- Départément de Biologie, Faculté des Sciences, Université Chouaib Doukkali, El Jadida, Morocco
| | - Maria Esther Esteban
- Section of Zoology and Anthropology, Department of Evolutive Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Tang JT, Andrews LM, van Gelder T, Shi YY, van Schaik RHN, Wang LL, Hesselink DA. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol 2016; 12:555-65. [PMID: 27010623 DOI: 10.1517/17425255.2016.1170808] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Tacrolimus (Tac) is effective in preventing acute rejection but has considerable toxicity and inter-individual variability in pharmacokinetics and pharmacodynamics. Part of this is explained by polymorphisms in genes encoding Tac-metabolizing enzymes and transporters. A better understanding of Tac pharmacokinetics and pharmacodynamics may help to minimize different outcomes amongst transplant recipients by personalizing immunosuppression. AREAS COVERED The pharmacogenetic contribution of Tac metabolism will be examined, with a focus on recent discoveries, new developments and ethnic considerations. EXPERT OPINION The strongest and most consistent association in pharmacogenetics is between the CYP3A5 genotype and Tac dose requirement, with CYP3A5 expressers having a ~ 40-50% higher dose requirement compared to non-expressers. Two recent randomized-controlled clinical trials using CYP3A5 genotype, however, did not show a decrease in acute rejections nor reduced toxicity. CYP3A4*22, CYP3A4*26, and POR*28 are also associated with Tac dose requirements and may be included to provide the expected improvement of Tac therapy. Studies focusing on the intracellular drug concentrations and on calcineurin inhibitor-induced nephrotoxicity also seem promising. For all studies, however, the ethnic prevalence of genotypes should be taken into account, as this may significantly impact the effect of pre-emptive genotyping.
Collapse
Affiliation(s)
- J T Tang
- a Department of Laboratory Medicine , West China Hospital of Sichuan University , Chengdu , China.,b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - L M Andrews
- b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - T van Gelder
- b Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,c Department of Internal Medicine, Division of Nephrology and Renal Transplantation , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Y Y Shi
- d Department of Nephrology , West China Hospital of Sichuan University , Chengdu , China
| | - R H N van Schaik
- e Department of Clinical Chemistry , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - L L Wang
- a Department of Laboratory Medicine , West China Hospital of Sichuan University , Chengdu , China
| | - D A Hesselink
- c Department of Internal Medicine, Division of Nephrology and Renal Transplantation , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
15
|
Tabur S, Oztuzcu S, Oguz E, Demiryürek S, Dagli H, Alasehirli B, Ozkaya M, Demiryürek AT. CYP gene expressions in obesity-associated metabolic syndrome. Obes Res Clin Pract 2016; 10:719-723. [PMID: 27010496 DOI: 10.1016/j.orcp.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The contribution of cytochrome P450 (CYP) gene expressions in metabolic syndrome (MetS) has not been elucidated, and was the aim of this study. METHODS A total of 51 MetS patients and 41 healthy controls with similar age and sex were included to this study. mRNA from blood samples was extracted, and real-time polymerase chain reaction was performed for gene expressions using a dynamic array system. RESULTS We observed marked suppressions in CYP2A6 (p=0.0123), CYP4F2 (p=0.0005), CYP3A5 (p=0.0003), and CYP17A1 (p<0.0001) gene expressions in MetS patients. CONCLUSIONS This is the first study to provide evidence that depressed expressions of CYP2A6, CYP4F2, CYP3A5, and CYP17A1 genes may play a role in MetS.
Collapse
Affiliation(s)
- Suzan Tabur
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Elif Oguz
- Department of Medical Pharmacology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Hasan Dagli
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Belgin Alasehirli
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Mesut Ozkaya
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
16
|
Fathy M, Kamal M, Mohy A, Nabil A. Impact of CYP3A5 and MDR-1 gene polymorphisms on the dose and level of tacrolimus among living-donor liver transplanted patients: single center experience. Biomarkers 2016; 21:335-41. [PMID: 26856709 DOI: 10.3109/1354750x.2016.1139002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM OF WORK To assess the impact of Cytochrome P450 3A5 (CYP3A5) and multidrug resistance-1 gene (MDR-1) single nucleotide polymorphisms on the dose and blood level of tacrolimus among liver transplanted patients. PATIENTS AND METHODS We enrolled a prospective study of 41 liver transplanted patients. Dose-adjusted trough blood concentration (C/D ratio) was calculated. Polymerase chain reaction-restriction fragment length polymorphism followed by sequencing was done for genotyping of CYP3A5*3 (6986A > G). RESULTS At 1 week, 1 and 3 months C/D ratio were significantly lower in CYP3A5 expressers *1/*1 patients compared to non-expressers *3/*3. CONCLUSION CYP3A5 (6986A > G) genotype, rather than MDR-1 (2677G > A/T) variant, has an impact on tacrolimus pharmacokinetics.
Collapse
Affiliation(s)
- Mona Fathy
- a Clinical and Chemical Pathology Department, Cairo University , Cairo , Egypt and
| | - Manal Kamal
- a Clinical and Chemical Pathology Department, Cairo University , Cairo , Egypt and
| | - Abeer Mohy
- a Clinical and Chemical Pathology Department, Cairo University , Cairo , Egypt and
| | - Ahmad Nabil
- b Tropical Medicine Department, Faculty of Medicine, Cairo University , Cairo , Egypt
| |
Collapse
|
17
|
Stefanović NZ, Cvetković TP, Jevtović-Stoimenov TM, Ignjatović AM, Paunović GJ, Veličković RM. Investigation of CYP 3A5 and ABCB1 gene polymorphisms in the long-term following renal transplantation: Effects on tacrolimus exposure and kidney function. Exp Ther Med 2015; 10:1149-1156. [PMID: 26622455 DOI: 10.3892/etm.2015.2598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
The clinical use of tacrolimus (Tac) is complicated by the large inter-individual variability in its pharmacokinetics as well as by chronic adverse effects on renal function. The main goal of this study was to evaluate the potential influence of cytochrome P450 3A5 (CYP 3A5) and ATP-binding cassette transporter B1 (ABCB1) gene polymorphisms on Tac dose requirements and dose-adjusted concentrations in different long-term periods following renal transplantation. Another aim was to investigate whether these polymorphisms affect renal function in late post-transplant period. A total of 91 renal transplant recipients were enrolled for genotyping analysis, and 53 of these entered into a pharmacokinetic-pharmacogenetic study. Allele-specific polymerase chain reaction was used for CYP 3A5 and ABCB1 polymorphism determination. Pharmacokinetic data (dose, trough concentration and dose-adjusted concentration of Tac) and renal function parameters [creatinine (Cre) clearance and serum Cre level] were analyzed in relation to patient genotype at 6, 12 and 24 months after transplantation. Also, linear regression analysis was performed to evaluate the effect of CYP 3A5 and ABCB1 genotypes on Tac exposure and renal function up to 24 months post-transplant. Individuals carrying the CYP 3A5*1/*3 genotype had higher Tac dose requirements than CYP 3A5*3/*3 carriers at 6, 12 and 24 months after renal transplantation. The results revealed that ABCB1 polymorphism did not influence Tac dose requirements independently. Regression analysis showed that CYP 3A5 influenced the Tac dose-adjusted concentration as well as renal function up to 24 months post-transplant. These findings confirmed that CYP 3A5 polymorphism represents the most important determinant of Tac dose and exposure in the late period following renal transplantation. Furthermore, the obtained results indicate that the decline in renal function may be more pronounced in patients with CYP 3A5*1 in the long-term period after renal transplantation.
Collapse
Affiliation(s)
- Nikola Z Stefanović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis 18000, Serbia
| | - Tatjana P Cvetković
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Nis 18000, Serbia ; Clinic of Nephrology, Clinical Centre Nis, Nis 18000, Serbia
| | | | | | | | - Radmila M Veličković
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis 18000, Serbia ; Clinic of Nephrology, Clinical Centre Nis, Nis 18000, Serbia
| |
Collapse
|
18
|
Potential role of tacrolimus in erythrocytes' antioxidative capacity in long-term period after renal transplantation. Eur J Pharm Sci 2015; 70:132-9. [PMID: 25657088 DOI: 10.1016/j.ejps.2015.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 11/21/2022]
Abstract
The main goal of this study was to evaluate the influence of tacrolimus daily dose (TDD) as well as cytochrome P450 (CYP) 3A5 6986A>G and ABCB1 3435C>T polymorphisms on the erythrocytes' oxidative stress parameters in long-term period after renal transplantation (Tx). Secondly, we investigated whether tacrolimus and/or oxidative injury might have affected renal function or it was independent from both. In order to evaluate erythrocytes' oxidative stress status in 72 renal transplant recipients and 62 healthy volunteers, we measured the levels of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase (GR) as well. Also, we performed allele-specific PCR to determine CYP 3A5 and ABCB1 polymorphisms. Erythrocytes' TBARS positively correlated with SOD, GPX and negatively with GFR. Tested polymorphisms affected TDD, but not oxidative stress parameters. TDD positively correlated with GSH and negatively with GFR. Additionally, tacrolimus dose-adjusted trough concentrations positively correlated with GFR and negatively with GPX and GSH. Furthermore, regression analysis showed that TBARS and TDD independently and negatively affected GFR in long term period after Tx. Our findings suggest that tacrolimus may increase erythrocytes' antioxidative capacity. Regardless, it may be involved in renal function decline in a long-term period after Tx, which seems to be independent from oxidative stress mediated reduction in renal function.
Collapse
|
19
|
Fan J, Zhang X, Ren L, Chen D, Wu S, Guo F, Qin S, Wang Z, Lin Z, Xing T, Sun X, Peng Z. Donor IL-18 rs5744247 polymorphism as a new biomarker of tacrolimus elimination in Chinese liver transplant patients during the early post-transplantation period: results from two cohort studies. Pharmacogenomics 2015; 16:239-50. [PMID: 25712187 DOI: 10.2217/pgs.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: This study evaluated the relationships between IL-18 polymorphisms and tacrolimus elimination in Chinese liver transplant patients. Patients & methods: Eighty-four liver transplant patients from Shanghai (training set) and 50 patients from Shandong (validating set) were inculded. IL-18 polymorphisms (rs5744247, rs7106524, rs549908, rs187238 and rs1946518) and CYP3A5 rs776746 were genotyped. Results: In training set, daily drug dose, total bilirubin, donor CYP3A5 rs776746 and IL-18 rs5744247 genotypes were screened to construct prediction model for tacrolimus elimination. This model was confirmed in validating set (p < 0.001). Donor IL-18 rs5744247 polymorphism was an independent predictor of tacrolimus elimination in the first week after transplantation in both training (p = 0.008) and validating cohorts (p = 0.033). Conclusion: Donor IL-18 rs5744247 polymorphism may influence on tacrolimus elimination. Original submitted 16 July 2014; Revision submitted 12 November 2014
Collapse
Affiliation(s)
- Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ren
- Department of Hepatobiliary Pancreatic Surgery, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dawei Chen
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shaohan Wu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Feng Guo
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhong Lin
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tonghai Xing
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xing Sun
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
20
|
Elens L, Bouamar R, Shuker N, Hesselink DA, van Gelder T, van Schaik RHN. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. Br J Clin Pharmacol 2014; 77:715-28. [PMID: 24118098 DOI: 10.1111/bcp.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics has generated many expectations for its potential to individualize therapy proactively and improve medical care. However, despite the huge amount of reported genetic associations with either pharmacokinetics or pharmacodynamics of drugs, the translation into patient care is still slow. In fact, strong evidence for a substantial clinical benefit of pharmacogenetic testing is still limited, with a few exceptions. In kidney transplantation, established pharmacogenetic discoveries are being investigated for application in the clinic to improve efficacy and to limit toxicity associated with the use of immunosuppressive drugs, especially the frequently used calcineurin inhibitors (CNIs) tacrolimus and ciclosporin. The purpose of the present review is to picture the current status of CNI pharmacogenetics and to discuss the most promising leads that have been followed so far.
Collapse
Affiliation(s)
- Laure Elens
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium; Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam
| | | | | | | | | | | |
Collapse
|
21
|
Combined Treatment of Tacrolimus and Everolimus Increases Oxidative Stress by Pharmacological Interactions. Transplantation 2014; 98:22-8. [DOI: 10.1097/tp.0000000000000146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Chen H, Shen ZY, Xu W, Fan TY, Li J, Lu YF, Cheng ML, Liu J. Expression of P450 and nuclear receptors in normal and end-stage Chinese livers. World J Gastroenterol 2014; 20:8681-8690. [PMID: 25024626 PMCID: PMC4093721 DOI: 10.3748/wjg.v20.i26.8681] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the expression of P450 enzyme genes by using end-stage liver disease samples and trimmed normal Chinese donor livers.
METHODS: The end-stage liver disease samples [n = 93, including hepatocellular carcinoma (HCC), peri-HCC tissue, hepatitis B virus cirrhosis, alcoholic cirrhosis, and severe cirrhosis] and trimmed normal Chinese donor livers (n = 35) from The Institute of Organ Transplantation in Beijing, China. Total RNA was extracted, purified, and subjected to real-time RT-PCR analysis.
RESULTS: For cytochrome P450 enzymes 1 (CYP1) family, the expression of CYP1A2 was decreased 90% in HCC, 80% in alcoholic cirrhosis, and 65% in severe cirrhosis. For CYP2 family, the expression of CAR was decreased 50% in HCC, but increased 50% in peri-HCC tissues. Similar decreases (about 50%) of CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 were observed in HCC, as compared to peri-HCC tissues and normal livers. CYP2C19 were decreased in all end-stage liver diseases and CYP2E1 also decreased in alcoholic cirrhosis and severe cirrhosis. For CYP3 family, the expression of PXR was decreased 60% in HCC, together with decreases in CYP3A4, CYP3A5, and CYP3A7. In contrast, the expression of CYP3A7 was slightly increased in HBV cirrhosis. The expression of CYP4A11 was decreased 85% in HCC, 7% in alcoholic cirrhosis and severe liver cirrhosis, along with decreases in PPARα. The 93 end-stage livers had much higher inter-individual variations in gene expression than 35 normal livers.
CONCLUSION: The expression of CYP enzyme genes and corresponding nuclear receptors was generally decreased in end-stage liver diseases, and significant differences in gene expression were evident between peri-HCC and HCC.
Collapse
|
23
|
Kim SK, Park HJ, Seok H, Jeon HS, Lee TW, Lee SH, Moon JY, Ihm CG, Kim TH, Kim YH, Kang SW, Park SJ, Jeong KH, Chung JH. Association studies of cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) gene polymorphisms with acute rejection in kidney transplantation recipients. Clin Transplant 2014; 28:707-12. [PMID: 24654912 DOI: 10.1111/ctr.12369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that single-nucleotide polymorphisms (SNPs) are associated with allograft rejection in kidney transplantation recipients. We evaluated the possible association between SNPs of the cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) gene, and acute rejection (AR) among renal transplant patients in a Korean population. We conducted a case-control association study in 63 AR and 284 non-AR kidney transplant recipients. The SNPs of CYP2E1 were genotyped by direct sequencing. Recipient sex (p = 0.023) and the use of tacrolimus (p = 0.017) were significantly different between the two groups. The use of mycophenolate mofetil (MMF) and antibody induction therapy was significantly lower in the AR group. Multiple logistic regression models (codominant, dominant, recessive, and log-additive models) adjusted by sex and type of immunosuppressive regimens were applied to determine the odds ratios (ORs), 95% confidence intervals (CIs), and p-values. The rs2515641 of CYP2E1 showed significant differences between the AR patient group and non-AR group (p = 0.003, OR = 2.55, 95% CI = 1.37-4.75 in the codominant 1 model; p = 0.002, OR = 2.61, 95% CI = 1.43-4.77 in the dominant model; p = 0.0035, OR = 2.13, 95% CI = 1.29-3.50 in the log-additive model). The allele of the rs2515641 SNP also showed a significant association (p = 0.004, OR = 1.99, 95% CI = 1.24-3.21). This study suggests that the CYP2E1 polymorphism may be related to the development of AR in Korean kidney transplantation recipients.
Collapse
Affiliation(s)
- Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee JS, Cheong HS, Kim LH, Kim JO, Seo DW, Kim YH, Chung MW, Han SY, Shin HD. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:479-84. [PMID: 24381495 PMCID: PMC3874433 DOI: 10.4196/kjpp.2013.17.6.479] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/16/2013] [Accepted: 11/10/2013] [Indexed: 11/15/2022]
Abstract
Given the CYP3A4 and CYP3A5's impact on the efficacy of drugs, the genetic backgrounds of individuals and populations are regarded as an important factor to be considered in the prescription of personalized medicine. However, genetic studies with Korean population are relatively scarce compared to those with other populations. In this study, we aimed to identify CYP3A4/5 polymorphisms and compare the genotype distributions among five ethnicities. To identify CYP3A4/5 SNPs, we first performed direct sequencing with 288 DNA samples which consisted of 96 Koreans, 48 European-Americans, 48 African-Americans, 48 Han Chinese, and 48 Japanese. The direct sequencing identified 15 novel SNPs, as well as 42 known polymorphisms. We defined the genotype distributions, and compared the allele frequencies among five ethnicities. The results showed that minor allele frequencies of Korean population were similar with those of the Japanese and Han Chinese populations, whereas there were distinct differences from European-Americans or African-Americans. Among the pharmacogenetic markers, frequencies of CYP3A4*1B (rs2740574) and CYP3A5*3C (rs776742) in Asian groups were different from those in other populations. In addition, minor allele frequency of CYP3A4*18 (rs28371759) was the highest in Korean population. Additional in silico analysis predicted that two novel non-synonymous SNPs in CYP3A5 (+27256C>T, P389S and +31546T>G, I488S) could alter protein structure. The frequency distributions of the identified polymorphisms in the present study may contribute to the expansion of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Jin Sol Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Korea
| | - Ji On Kim
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Korea
| | - Doo Won Seo
- Clinical Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Osong 363-700, Korea
| | - Young Hoon Kim
- Clinical Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Osong 363-700, Korea
| | - Myeon Woo Chung
- Clinical Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Osong 363-700, Korea
| | - Soon Young Han
- Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Osong 363-700, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul 121-742, Korea. ; Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Korea
| |
Collapse
|
25
|
The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2013; 53:123-39. [DOI: 10.1007/s40262-013-0120-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RHN. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14:47-62. [PMID: 23252948 DOI: 10.2217/pgs.12.187] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have attempted to explain the interindividual variability observed in drug metabolism by assessing the impact of SNPs in genes implicated in drug absorption, distribution, metabolism and excretion pathways. Particular attention has been paid to the CYP450s. CYP3A4 is the main CYP isoform in human liver and intestine and is involved in the metabolism of many drugs. Its activity, however, is characterized by widespread variation in the general population, which is thought to have a genetic basis. A new CYP3A4 allele (CYP3A4*22; rs35599367 C>T in intron 6) with a frequency of 5-7% in the Caucasian population was recently discovered through its association with low hepatic CYP3A4 expression and CYP3A4 activity, and showing effects on statin, tacrolimus and cyclosporine metabolism. This review will summarize the current literature on phenotypes linked to this new promising CYP3A4 genetic marker SNP and discusses the potential clinical relevance.
Collapse
Affiliation(s)
- Laure Elens
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Chen D, Fan J, Guo F, Qin S, Wang Z, Peng Z. Novel single nucleotide polymorphisms in interleukin 6 affect tacrolimus metabolism in liver transplant patients. PLoS One 2013; 8:e73405. [PMID: 23991193 PMCID: PMC3753270 DOI: 10.1371/journal.pone.0073405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tacrolimus is the first-line immunosuppressant after organ transplantation. It is mainly metabolized by cytochrome P450, family 3, subfamily A (CYP3A) enzymes, but there are large individual differences in metabolism. Interleukin 6 (IL6) has been shown to cause a pan-suppression of mRNA levels of ten major CYP enzymes in human hepatocyte cultures. IL6 has been shown to provide hepatoprotection in various models of liver injury. Rs1800796 is a locus in the IL6 gene promoter region which regulates cytokine production. We speculated that IL6 rs1800796 polymorphisms may lead to individual differences in tacrolimus metabolism by affecting CYP3A enzymes levels and liver function after liver transplantation. METHODOLOGY/PRINCIPAL FINDINGS Ninety-six liver transplant patients receiving tacrolimus were enrolled in the study. Two single nucleotide polymorphisms (SNP), CYP3A5 rs776746 and IL6 rs1800796, were genotyped in both donors and recipients. The effects of SNPs on tacrolimus concentration/dose (C/D ratio) at four weeks after transplantation were studied, as well as the effects of donor IL6 rs1800796 polymorphisms on liver function. Both donor and recipient CYP3A5 rs776746 allele A showed association with lower C/D ratios, while donor IL6 rs1800796 allele G showed an association with higher C/D ratios. Donor CYP3A5 rs776746 allele A, IL6 rs1800796 allele C, and recipient CYP3A5 rs776746 allele A were associated with fast tacrolimus metabolism. With increasing numbers of these alleles, patients were found to have increasingly lower tacrolimus C/D ratios at time points after transplantation. Donor IL6 rs1800796 allele G carriers showed an association with higher glutamic-pyruvic transaminase (GPT) levels. CONCLUSIONS Combined analysis of donor CYP3A5 rs776746, IL6 rs1800796, and recipient CYP3A5 rs776746 polymorphisms may distinguish tacrolimus metabolism better than CYP3A5 rs776746 alone. IL6 may lead to individual differences in tacrolimus metabolism mainly by affecting liver function.
Collapse
Affiliation(s)
- Dawei Chen
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University; Shanghai Genomepilot Institutes for Genomics and Human Health, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZW); (ZP)
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (ZW); (ZP)
| |
Collapse
|
28
|
Lemaitre F, Antignac M, Verdier MC, Bellissant E, Fernandez C. Opportunity to monitor immunosuppressive drugs in peripheral blood mononuclear cells: Where are we and where are we going? Pharmacol Res 2013; 74:109-12. [DOI: 10.1016/j.phrs.2013.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
29
|
Stefanović N, Cvetković T, Veličković-Radovanović R, Jevtović-Stoimenov T, Stojanović D, Živković N. SIGNIFICANCE OF CYP3A5 GENE POLYMORPHISM IN SERBIAN RENAL TRANSPLANT PATIENTS. ACTA MEDICA MEDIANAE 2013. [DOI: 10.5633/amm.2013.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|