1
|
Truong VB, Davis OS, Gracey J, Neal MS, Khokhar JY, Favetta LA. Sperm capacitation and transcripts levels are altered by in vitro THC exposure. BMC Mol Cell Biol 2023; 24:6. [PMID: 36823609 PMCID: PMC9951432 DOI: 10.1186/s12860-023-00468-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol (THC) is the primary phytocannabinoid responsible for the psychoactive properties of cannabis and is known to interact with the endocannabinoid system, which is functionally present in the male reproductive system. Since cannabis consumption is the highest among reproductive aged males, the current study aimed to further investigate the effects of THC exposure to phenotypical, physiological, and molecular parameters in sperm. Bull sperm of known fertility were used as a translational model for human sperm and subjected to in vitro treatment with physiologically relevant experimental doses of THC. Sperm parameters, capacitation, apoptosis, and transcript levels were evaluated following treatment. RESULTS Motility, morphology, and viability of bovine sperm was unaltered from THC exposure. However, 0.32µM of THC caused an increased proportion of capacitating sperm (p < 0.05) compared to control and vehicle group sperm. Transcriptome analysis revealed that 39 genes were found to be differentially expressed by 0.032µM THC exposure, 196 genes were differentially expressed by 0.32µM THC exposure, and 33 genes were differentially expressed by 3.2µM THC. Secondary analysis reveals pathways involving development, nucleosomes, ribosomes and translation, and cellular metabolism to be significantly enriched. CONCLUSION Phytocannabinoid exposure to sperm may adversely affect sperm function by stimulating premature capacitation. These findings also show for the first time that spermatozoal transcripts may be altered by THC exposure. These results add to previous research demonstrating the molecular effects of cannabinoids on sperm and warrant further research into the effects of cannabis on male fertility.
Collapse
Affiliation(s)
- Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Jade Gracey
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
2
|
Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int J Mol Sci 2023; 24:ijms24043379. [PMID: 36834790 PMCID: PMC9960060 DOI: 10.3390/ijms24043379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
For decades now, sperm cryopreservation has been a pillar of assisted reproduction in animals as well as humans. Nevertheless, the success of cryopreservation varies across species, seasons, and latitudes and even within the same individual. With the dawn of progressive analytical techniques in the field of genomics, proteomics, and metabolomics, new options for a more accurate semen quality assessment have become available. This review summarizes currently available information on specific molecular characteristics of spermatozoa that could predict their cryotolerance before the freezing process. Understanding the changes in sperm biology as a result of their exposure to low temperatures may contribute to the development and implementation of appropriate measures to assure high post-thaw sperm quality. Furthermore, an early prediction of cryotolerance or cryosensitivity may lead to the establishment of customized protocols interconnecting adequate sperm processing procedures, freezing techniques, and cryosupplements that are most feasible for the individual needs of the ejaculate.
Collapse
|
3
|
A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia. Genes (Basel) 2022; 13:genes13101721. [PMID: 36292606 PMCID: PMC9602071 DOI: 10.3390/genes13101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.
Collapse
|
4
|
Hernández-Silva G, Caballero-Campo P, Chirinos M. Sperm mRNAs as potential markers of male fertility. Reprod Biol 2022; 22:100636. [PMID: 35338912 DOI: 10.1016/j.repbio.2022.100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Advances in transcriptomic technologies are contributing to an increased understanding of the role of spermatozoal RNA in sperm physiology. Although sperm transcriptomic studies have delivered large amounts of valuable information, no new male fertility biomarkers have emerged from such studies to date. This review summarizes current knowledge about the potential relevance of certain mRNA as biomarkers, focusing on comparative studies of human spermatozoa transcriptomic profiles from fertile and pathological semen samples. Asthenozoospermia is the semen aberrant condition that has been most exhaustively investigated to date. We cross-analyzed findings from three different studies on the transcriptome of asthenozoospermic semen samples and identified 100 transcripts that were consistently differentially expressed and that consequently are candidates for characterizing the molecular source of this sperm anomaly. The potential use of sperm mRNAs as predictors of outcomes of assisted reproductive technologies (ART) is also reviewed. Improving the understanding of the human spermatozoa mRNA content is expected to improve the evaluation and diagnosis of infertile men, and ultimately facilitate the selection of the best treatment to overcome infertility.
Collapse
Affiliation(s)
- Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
5
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
6
|
Güngör BH, Tektemur A, Arkali G, Dayan Cinkara S, Acisu TC, Koca RH, Etem Önalan E, Özer Kaya S, Kizil M, Sönmez M, Gür S, Çambay Z, Yüce A, Türk G. Effect of freeze-thawing process on lipid peroxidation, miRNAs, ion channels, apoptosis and global DNA methylation in ram spermatozoa. Reprod Fertil Dev 2021; 33:747-759. [PMID: 34585662 DOI: 10.1071/rd21091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
This study was carried out to investigate the effect of the semen freeze-thawing process on the functionality and molecular structure of ram spermatozoa. The temperature of pooled and diluted semen at 38°C (group 1, control) was lowered to 5°C (group 2), and it was subjected to glycerolisation-equilibration (group 3), frozen and thawed (group 4). Compared to the control, deterioration in spermatological parameters and significant increases in lipid peroxidation and global DNA methylation levels were observed in groups 3 and 4. When compared with the control, significant downregulation in the levels of miR-485 of group 2, miR-29a of group 3 and let-7a, miR-485 and miR-29a of group 4, and significant upregulation in the levels of miR-107 of group 3 and miR-127 of groups 3 and 4 were detected. In comparison to the control, significant upregulation in the levels of CatSper1, CatSper2, CatSper3, CatSper4, ANO1 and TRPM3 of group 2, CatSper4, ANO1 and TRPM3 of group 3 and KCNJ11 of group 4, and significant downregulation in the CatSper 3 level of group 4 were determined. As a result, the semen freeze-thawing process causes motility and morphological disorders in rams. This may be due to molecular changes associated with lipid peroxidation in spermatozoa.
Collapse
Affiliation(s)
- Brahim Halil Güngör
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Gözde Arkali
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Serap Dayan Cinkara
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Tutku Can Acisu
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Recep Hakki Koca
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Bingöl University, Bingöl, Turkey
| | - Ebru Etem Önalan
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Seyma Özer Kaya
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Meltem Kizil
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Mustafa Sönmez
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Seyfettin Gür
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Zafer Çambay
- Department of Medical Services and Technics, Firat University, High School of Medical Services, Elazig, Turkey
| | - Abdurrauf Yüce
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Gaffari Türk
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| |
Collapse
|
7
|
Aliakbari F, Eshghifar N, Mirfakhraie R, Pourghorban P, Azizi F. Coding and Non-Coding RNAs, as Male Fertility and Infertility Biomarkers. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:158-166. [PMID: 34155862 PMCID: PMC8233923 DOI: 10.22074/ijfs.2021.134602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Semen analysis is usually the first step in the assessment of male fertility. Although analyzes provide valuable information about male fertility, success of cytoplasmic sperm injection using this method is not predictable. In the recent years, studies have shown that sperm quality assessment helps clinicians predict male fertility status based on the expression of biomarkers. To write this article, a comprehensive study was conducted on several RNA transcripts by searching related words on medical information databases by 2018. According to the literature, spermatogenesis based disorders in male infertility have a significant relationship with the expression level of some RNA molecules (like DAZ and PRM1/PRM2 ratio) in semen and testicular tissue. Thus, they might be used as predictor biomarkersto evaluate success rate of testicular sperm extraction (TESE) procedure, but confirmation of this hypothesis requires more extensive research. By comparing the number of RNAs attributed to each fertility disorder in men, it is possible to trace the causes of disease or return fertility to some infertile patients by regulating the mentioned molecules. Further researches can provide a better understanding of the use of RNA expression profiles in the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Fereshteh Aliakbari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Eshghifar
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Pourghorban
- Department of Biology, Faculty of Biological Sciences, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Faezeh Azizi
- Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Cheng Y, Vechtova P, Fussy Z, Sterba J, Linhartová Z, Rodina M, Tučková V, Gela D, Samarin AM, Lebeda I, Xin M, Zhang S, Rahi D, Linhart O. Changes in Phenotypes and DNA Methylation of In Vitro Aging Sperm in Common Carp Cyprinus carpio. Int J Mol Sci 2021; 22:5925. [PMID: 34073009 PMCID: PMC8198300 DOI: 10.3390/ijms22115925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
Collapse
Affiliation(s)
- Yu Cheng
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Pavlina Vechtova
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Zoltan Fussy
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Jan Sterba
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Zuzana Linhartová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Vladimíra Tučková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - David Gela
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Miaomiao Xin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
- College of Life Science, Northwest University, Xi’an 710069, China
| | - Songpei Zhang
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Deepali Rahi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| |
Collapse
|
9
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
10
|
A novel protein biochip screening serum anti-sperm antibody expression and natural pregnancy rate in a follow-up study in Chinese infertility. Biosci Rep 2021; 40:221951. [PMID: 31985014 PMCID: PMC7012658 DOI: 10.1042/bsr20191769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
Production of anti-sperm antibody (ASA) often suffers from autoimmune reaction against sperms in human infertility. The antibodies are measured in both blood and seminal plasma of males. Here, we reported a simple protein biochip methodology that takes advantage of a functionalized self-assembled monolayer modified by N-hydroxysuccinimide (NHS) and enables identification of anti-sperm antibody in Chinese male infertility. To validate this biochip platform, we immobilized purified sperm protein on the biochip surface and tested a variety of parameters in quality controls for the protein assay, respectively. Then, we analyzed serum samples from 368 patients with infertility and 116 healthy donors by means of this biochip simultaneously. We found that positive rate of serum ASA was 20.92% (77/368) in the cases and 1.72% (2/116) in the controls, respectively. Furthermore, we further corroborated the biochip assay in comparison with ELISA method. We found that both methods were compatible for the detection of serum ASA in the patients. In addition, a follow-up study for natural conception in ASA-positive and ASA-negative patients was conducted. The result showed a significant correlation between serum ASA expression and natural pregnancy rate 6.5% in ASA-positive patients while 18.9% in ASA-negative patients, indicating the potential roles of ASA in naturally reproductive processes.
Collapse
|
11
|
Pandruvada S, Royfman R, Shah TA, Sindhwani P, Dupree JM, Schon S, Avidor-Reiss T. Lack of trusted diagnostic tools for undetermined male infertility. J Assist Reprod Genet 2021; 38:265-276. [PMID: 33389378 PMCID: PMC7884538 DOI: 10.1007/s10815-020-02037-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Semen analysis is the cornerstone of evaluating male infertility, but it is imperfect and insufficient to diagnose male infertility. As a result, about 20% of infertile males have undetermined infertility, a term encompassing male infertility with an unknown underlying cause. Undetermined male infertility includes two categories: (i) idiopathic male infertility-infertile males with abnormal semen analyses with an unknown cause for that abnormality and (ii) unexplained male infertility-males with "normal" semen analyses who are unable to impregnate due to unknown causes. The treatment of males with undetermined infertility is limited due to a lack of understanding the frequency of general sperm defects (e.g., number, motility, shape, viability). Furthermore, there is a lack of trusted, quantitative, and predictive diagnostic tests that look inside the sperm to quantify defects such as DNA damage, RNA abnormalities, centriole dysfunction, or reactive oxygen species to discover the underlying cause. To better treat undetermined male infertility, further research is needed on the frequency of sperm defects and reliable diagnostic tools that assess intracellular sperm components must be developed. The purpose of this review is to uniquely create a paradigm of thought regarding categories of male infertility based on intracellular and extracellular features of semen and sperm, explore the prevalence of the various categories of male factor infertility, call attention to the lack of standardization and universal application of advanced sperm testing techniques beyond semen analysis, and clarify the limitations of standard semen analysis. We also call attention to the variability in definitions and consider the benefits towards undetermined male infertility if these gaps in research are filled.
Collapse
Affiliation(s)
- Swati Pandruvada
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Rachel Royfman
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Tariq A. Shah
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - James M. Dupree
- Department of Urology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48019 USA
| | - Samantha Schon
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| |
Collapse
|
12
|
Abstract
Infertility affects nearly 15 per cent of all couples within the reproductive age worldwide, with about 50 per cent being exhibited in the male, called male factor infertility. Successful reproduction is dependent on sperm chromatin integrity. Spermatozoa are highly specialized cells that aim to transmit the paternal genomic blueprint to the oocyte. The spermatozoon is regulated by redox mechanisms during its epididymal transit to acquire fertilizing ability. While, at physiological levels, the production of reactive oxygen species (ROS) supports the spermatozoon to acquire its fertilizing ability, at high concentrations, it affects sperm function leading to infertility. Emerging proteomic technologies provide an opportunity to address these key issues that may solve many fertility-associated problems resulting from oxidative stress (OS). This review highlights the need for an efficient therapeutic approach to male infertility with the application of high-throughput OS-mediated proteomic technology, and also addresses the question as to whether targeting these altered sperm-specific proteins may help in designing an efficient and reversible male contraceptive.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| | - Luna Samanta
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| |
Collapse
|
13
|
Zhou B, Wei C, Khan MA, Chen H, Fu J. Characterization and molecular cloning of novel isoforms of human spermatogenesis associated gene SPATA3. Mol Biol Rep 2019; 46:3827-3834. [PMID: 31006096 DOI: 10.1007/s11033-019-04825-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/20/2022]
Abstract
This study aimed to clone and characterize novel isoforms of the human SPATA3 gene. The isoforms of SPATA3 gene was cloned into pGMT vector using human testis cDNA as template, and Sanger sequencing was performed. Their characterizations and tissue-specific expression profiles were analyzed. The two novel isoforms were successfully cloned and deposited into GenBank as MG029442 (AYP71042) and MG029443 (AYP71043) respectively. Isoforms SPATA3-I1 and SPATA3-I2 were found with higher identity, where only 7 amino acids missed at N-terminus in SPATA3-I2, whereas SPATA3-I3 and SPATA3-I4 had more C-terminus deletion but in SPATA3-I3 no amino acid missed at N-terminus. Importantly, we found the characterization of QQPSPESTP domain with two repeats for isoforms SPATA3-I1 and SPATA3-I4, whereas three repeats for isoforms SPATA3-I1 and SPATA3-I2. The SPATA3 family of genes is orthologous conserved; the similar core PEST domain was also revealed with variable repeats, indicating that this domain may pay roles in the spermatogenesis and male development differently. Furthermore, RNA-seq data indicated that the SPATA3 gene is only expressed in testis. This further suggests that SPATA3 plays potential roles only in male development, spermatogenesis or spermatogenesis cell apoptosis. Thus, in this study we cloned the two novel isoforms of SPATA3, SPATA3-I3 and SPATA3-I4, and found interesting characteristic PEST domain (QQPSPESTP) conserved in different isoforms as well as in different species. SPATA3 is an essential gene and may functions in male reproductive system, specifically in spermatogenesis.
Collapse
Affiliation(s)
- Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, 3-319, Zhongshan Rd, Luzhou, 646000, Sichuan, China
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Hospital, Guangzhou, Guangdong, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, 3-319, Zhongshan Rd, Luzhou, 646000, Sichuan, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, 3-319, Zhongshan Rd, Luzhou, 646000, Sichuan, China
| | - Hanchun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, 3-319, Zhongshan Rd, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology 2019; 7:373-381. [PMID: 30920782 DOI: 10.1111/andr.12610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sperm DNA integrity is crucial for transmission of genetic information to future generations and DNA damage can occur during chromatin packaging. Chromatin packaging involves the replacement of somatic nucleosomal histones by nuclear proteins called protamines. Protamine 1 (PRM1) is transcribed and translated in spermatids of all mammals; however, protamine 2 (PRM2) is transcribed in low levels in spermatids and it is not yet described in bull mature spermatozoa. OBJECTIVES The aim of this study was to assess gene and protein expression of PRM2 and corroborate gene and protein expression of PRM1 in bull spermatozoa and testis. MATERIALS AND METHODS For this purpose, absolute q-RT-PCR was performed to calculate the number of copies of PRM1 and PRM2 mRNAs in bovine epididymal spermatozoa and testicular tissue. Western blot and mass spectrometry were performed to identify PRM1 and PRM2 in samples of bovine epididymal spermatozoa. Samples of bovine testicular tissue were collected to identify PRM1 and PRM2 by immunohistochemistry. RESULTS We evaluated that the number of PRM1 mRNA copies was about hundred times higher than PRM2 mRNA copies in sperm and testicular samples (p < 0.0001). In addition, we estimated the PRM1: PRM2 ratio based on mRNA number of copies. In spermatozoa, the ratio was 1: 0.014, and in testicle, the ratio was 1: 0.009. We also evaluated the immunolocalization for PRM1 and PRM2 in bovine testis, and both proteins were detected in spermatids. Western blot and mass spectrometry in bovine epididymal spermatozoa confirmed these results. CONCLUSION Our work identifies, for the first time, PRM2 in bovine epididymal spermatozoa and in testis. Further studies are still needed to understand the role of PRM2 on the chromatin of the spermatozoa and to verify how possible changes in PRM2 levels may influence the bull fertility.
Collapse
Affiliation(s)
- T R S Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - R Simões
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | - C M Mendes
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - M D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - E Nakajima
- Process Development Laboratory, Inovation Division, Butantan Institute, São Paulo, Brazil
| | - E A L Martins
- Process Development Laboratory, Inovation Division, Butantan Institute, São Paulo, Brazil
| | - J A Visintin
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| | - M E O A Assumpção
- Department of Animal Reproduction, School of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, Sao Paulo, Brazil
| |
Collapse
|
15
|
Zhang X, Zhang P, Song D, Xiong S, Zhang H, Fu J, Gao F, Chen H, Zeng X. Expression profiles and characteristics of human lncRNA in normal and asthenozoospermia sperm†. Biol Reprod 2018; 100:982-993. [DOI: 10.1093/biolre/ioy253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/16/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xiaoning Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Peng Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Suping Xiong
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | | | - Jianbo Fu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fengxin Gao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Harchegani AB, Shafaghatian H, Tahmasbpour E, Shahriary A. Regulatory Functions of MicroRNAs in Male Reproductive Health: A New Approach to Understanding Male Infertility. Reprod Sci 2018:1933719118765972. [PMID: 29587612 DOI: 10.1177/1933719118765972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of small noncoding RNAs (ncRNAs) that play critical roles in regulation of gene expression, especially at posttranscriptional level. Over the past decade, the degree to which miRNAs are involved in male infertility has become clear. They are expressed in a cell- or phase-specific manner during spermatogenesis and play crucial role in male reproductive health. Therefore, dysregulation of miRNAs in testicular cells can be considered as a molecular basis for reproductive failure and male infertility. The abnormal expression pattern of miRNAs can be transmitted to the offspring via assisted reproductive techniques (ART) and results in the birth of children with a higher risk of infertility, congenital abnormalities, and morbidity. This review expounds on the miRNAs reported to play essential roles in somatic cells development, germ cells differentiation, steroidogenesis, normal spermatogenesis, sperm maturation, and male infertility, as well as emphasizes their importance as minimally invasive biomarkers of male infertility.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shafaghatian
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- 2 Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Shahriary
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Corral-Vazquez C, Blanco J, Salas-Huetos A, Vidal F, Anton E. Normalization matters: tracking the best strategy for sperm miRNA quantification. Mol Hum Reprod 2016; 23:45-53. [DOI: 10.1093/molehr/gaw072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 11/14/2022] Open
|
18
|
Li CJ, Wang D, Zhou X. Sperm proteome and reproductive technologies in mammals. Anim Reprod Sci 2016; 173:1-7. [PMID: 27576173 DOI: 10.1016/j.anireprosci.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022]
Abstract
Sperm is highly differentiated cell that can be easily obtained and purified. Mature sperm is considered to be transcriptionally and translationally silent and incapable of protein synthesis. Recently, a large number of proteins have been identified in sperm from different species by using the proteomic approaches. Clinically, sperm proteins can be used as markers for male infertility due to different protein profiles identified in sperm from fertile and infertile male animals. Recent evidences have shown that the conditions of sperm preservation in vitro can also change the sperm protein profiles. This paper reviews the recent scientific publications available to address sperm proteome and their relationship with sperm cryopreservation, capacitation, fertilization, and separation of X and Y sperm. Future directions in the application of sperm proteomics to develop or optimize reproductive technologies in mammals are also discussed.
Collapse
Affiliation(s)
- Chun-Jin Li
- College of Animal Sciences, Jilin University, 5333 Xian Road, Changchun 130062, PR China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, PR China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, 5333 Xian Road, Changchun 130062, PR China.
| |
Collapse
|
19
|
Tavalaee M, Nasr-Esfahani MH. Expression profile ofPLCζ,PAWP,andTR-KITin association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 2016; 4:850-6. [DOI: 10.1111/andr.12179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/16/2023]
Affiliation(s)
- M. Tavalaee
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - M. H. Nasr-Esfahani
- Department of Reproductive Biotechnology; Reproductive Biomedicine Research Center; Royan Institute for Biotechnology, ACECR; Isfahan Iran
- Isfahan Fertility and Infertility Center; Isfahan Iran
| |
Collapse
|
20
|
Ma W, Wang C, Su Y, Tian Y, Zhu H. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes. Anim Reprod Sci 2015; 161:40-6. [DOI: 10.1016/j.anireprosci.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
|
21
|
Egea RR, Puchalt NG, Escrivá MM, Varghese AC. OMICS: Current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci 2014; 7:73-92. [PMID: 25191020 PMCID: PMC4150148 DOI: 10.4103/0974-1208.138857] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022] Open
Abstract
Many couples present fertility problems at their reproductive age, and although in the last years, the efficiency of assisted reproduction techniques has increased, these are still far from being 100% effective. A key issue in this field is the proper assessment of germ cells, embryos and endometrium quality, in order to determine the actual likelihood to succeed. Currently available analysis is mainly based on morphological features of oocytes, sperm and embryos and although these strategies have improved the results, there is an urgent need of new diagnostic and therapeutic tools. The emergence of the - OMICS technologies (epigenomics, genomics, transcriptomics, proteomics and metabolomics) permitted the improvement on the knowledge in this field, by providing with a huge amount of information regarding the biological processes involved in reproductive success, thereby getting a broader view of complex biological systems with a relatively low cost and effort.
Collapse
Affiliation(s)
- Rocío Rivera Egea
- Andrology Laboratory and Semen Bank, Instituto Universitario, IVI Valencia, Spain
| | | | | | | |
Collapse
|
22
|
Tahmasbpour E, Balasubramanian D, Agarwal A. A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet 2014; 31:1115-37. [PMID: 25117645 PMCID: PMC4156950 DOI: 10.1007/s10815-014-0280-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The assisted reproductive techniques aimed to assist infertile couples have their own offspring carry significant risks of passing on molecular defects to next generations. RESULTS Novel breakthroughs in gene and protein interactions have been achieved in the field of male infertility using genome-wide proteomics and transcriptomics technologies. CONCLUSION Male Infertility is a complex and multifactorial disorder. SIGNIFICANCE This review provides a comprehensive, up-to-date evaluation of the multifactorial factors involved in male infertility. These factors need to be first assessed and understood before we can successfully treat male infertility.
Collapse
Affiliation(s)
| | | | - Ashok Agarwal
- />Center for Reproductive Medicine, Cleveland Clinic, 44195 Cleveland, OH USA
| |
Collapse
|
23
|
Hosken DJ, Hodgson DJ. Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol Evol 2014; 29:451-5. [PMID: 24916312 DOI: 10.1016/j.tree.2014.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Classically, sperm were seen as transcriptionally inactive vehicles for delivering the paternal haplotype to an egg. Yet, it has become apparent that sperm also carry thousands of different RNAs, and the functions of most of these are unknown. Here, we make four novel suggestions for sperm RNA function. First, they could act as relatedness markers facilitating sperm cooperation. Second, they could act as paternally imposed suppressors of haploid interests. Third, they could act as a nuptial gift, providing the female with resources that entice her to fertilise ova using the sperm of the gift-provider. Fourth, they could represent the contents of a Trojan horse, delivered by males to manipulate female reproduction. We discuss these ideas and suggest how they might be tested.
Collapse
Affiliation(s)
- David J Hosken
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, TR10 9EZ, UK.
| | - David J Hodgson
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, TR10 9EZ, UK
| |
Collapse
|