1
|
Hu T, Ke X, Li W, Lin Y, Liang A, Ou Y, Chen C. CRISPR/Cas12a-Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204689. [PMID: 36442853 PMCID: PMC9839848 DOI: 10.1002/advs.202204689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Most multiplex nucleic acids detection methods require numerous reagents and high-priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point-of-care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR-RDB (CRISPR-based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost-effectiveness, instrument-free, ease to use, and visualization is reported. CRISPR-RDB integrates the trans-cleavage activity of CRISPR-Cas12a with a commercial RDB technique. It utilizes different Cas12a-crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific-oligonucleotide probes. It has demonstrated that the versatility of CRISPR-RDB by constructing a four-channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2. With a simple modification of crRNAs, the CRISPR-RDB can be modified to detect human papillomavirus, saving two-thirds of the time compared to a commercial PCR-RDB kit. Further, a user-friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR-RDB represents a desirable option for multiplexed biosensing and on-site diagnosis.
Collapse
Affiliation(s)
- Tao Hu
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Xinxin Ke
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Wei Li
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Yu Lin
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Ajuan Liang
- Center of Reproductive MedicineShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghai201204China
| | - Yangjing Ou
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Chuanxia Chen
- School of Materials Science and EngineeringUniversity of JinanJinanShandong250022China
| |
Collapse
|
2
|
Dai W, Yang T, Wang Y, Zhao Q, Zhan Y, Ye J, Han L, Qiu W, Zhang H, Liang L, Gu X, Yu Y. Rapid detection of twenty-nine common Chinese glucose-6-phosphate dehydrogenase variants using a matrix-assisted laser desorption/ionization-time of flight mass spectrometry assay on dried blood spots. Clin Biochem 2021; 94:27-34. [PMID: 33882285 DOI: 10.1016/j.clinbiochem.2021.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disease. Current neonatal screening methods for G6PD deficiency primarily rely on the use of biochemical tests. However, only 15%-20% of female carriers were estimated to have been detected using these tests. As a better alternative, DNA-based tests could be used for G6PD deficiency screening. We aimed to develop a matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay for G6PD variant detection. METHODS A MALDI-TOF MS assay with multiprimer extension (multi-PEX) was developed to rapidly and accurately detect the 29 common G6PD variants in the Chinese population using a dried blood spot as a template. A parallel study screening 571 unrelated neonatal samples using the MALDI-TOF MS and fluorescence quantitative enzymatic assays was performed. All results were confirmed by Sanger sequencing in a blind study. RESULTS In 571 unrelated neonatal samples, 34 positive samples, including 26 samples from hemizygous males and eight samples from heterozygous females, were correctly identified, yielding a clinical sensitivity of 100%. The results were validated using Sanger sequencing with 100% concordance. In contrast, the fluorescence quantitative enzymatic assay had a 75% false negative and 88.8% false positive rate for the detection of heterozygous G6PD deficient females. CONCLUSIONS We established a reliable MALDI-TOF MS assay for G6PD deficiency screening in the Chinese population maximizing the chance of detection of heterozygous G6PD deficient females and reducing the false negative and false positive rates associated with routinely used newborn screening procedures.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Tingting Yang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Qianfeng Zhao
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
3
|
Fan Z, Weng X, Huang G, Pan Z, Long Z, Fan Q, Tang W, Fang L, Long J, Hu T, Huang Y, Sun L. STARD-rapid screening for the 6 most common G6PD gene mutations in the Chinese population using the amplification refractory mutation system combined with melting curve analysis. Medicine (Baltimore) 2018; 97:e0426. [PMID: 29702993 PMCID: PMC5944484 DOI: 10.1097/md.0000000000010426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Dot-blot hybridization and high-resolution melting curve methods are used to detect G6PD gene mutations; however, the performance and throughput limitations of these methods hinder their use for screening large populations. For simple screening, we developed a novel approach called "Amplification Refractory Mutation System combined with Melting Curve Analysis (ARMS-MC)," which enables rapid and batch-based detection of the 6 most common G6PD mutations.In this method, we established 4 PCR reaction systems that can be used to detect the 6 most common G6PD mutations (c.95A>G, c.392G>T, c.871G>A, c.1024C>T, c.1376G>T, and c.1388G>A) in the Chinese population.The ARMS-MC method was evaluated with 174 cases of clinical G6PD-deficient samples, and the results were verified by direct sequencing at G6PD gene exons. The results showed that 170 samples had ≥1 of the 6 mutations, which accounted for 97.70% of all mutations. These results were consistent with the results of direct sequencing with 100% accuracy and specificity. Sequencing validation revealed other mutations in the 4 samples in which no mutation was detected by the ARMS-MC method.ARMS-MC provides a rapid, simple, inexpensive, and accurate screening method for detecting the most common G6PD mutations in Chinese people.
Collapse
Affiliation(s)
- Zuqian Fan
- Department of Clinical Laboratory, Qinzhou Maternal and Child Health Hospital
| | - Xunjin Weng
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
| | - Guosheng Huang
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
| | - Zhijian Pan
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
| | - Zhao Long
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
| | - Qiongying Fan
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, PR China
| | - Weijun Tang
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
| | - Lin Fang
- Department of Clinical Laboratory, Qinzhou Maternal and Child Health Hospital
| | - Ju Long
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, PR China
| | - Tian Hu
- Department of Clinical Laboratory, Qinzhou Maternal and Child Health Hospital
| | - Yongxia Huang
- Department of Clinical Laboratory, Qinzhou Maternal and Child Health Hospital
| | - Lei Sun
- Qinzhou Key Laboratory of Molecular and Cell Biology on Endemic Diseases, Qinzhou
- Laboratory of Medical Genetics, Qinzhou Maternal and Child Health Hospital, Guangxi, PR China
| |
Collapse
|
4
|
Xia Z, Chen P, Tang N, Yan T, Zhou Y, Xiao Q, Huang Q, Li Q. Rapid detection of G6PD mutations by multicolor melting curve analysis. Mol Genet Metab 2016; 119:168-73. [PMID: 27495838 DOI: 10.1016/j.ymgme.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
The MeltPro G6PD assay is the first commercial genetic test for glucose-6-phosphate dehydrogenase (G6PD) deficiency. This multicolor melting curve analysis-based real-time PCR assay is designed to genotype 16 G6PD mutations prevalent in the Chinese population. We comprehensively evaluated both the analytical and clinical performances of this assay. All 16 mutations were accurately genotyped, and the standard deviation of the measured Tm was <0.3°C. The limit of detection was 1.0ng/μL human genomic DNA. The assay could be run on four mainstream models of real-time PCR machines. The shortest running time (150min) was obtained with LightCycler 480 II. A clinical study using 763 samples collected from three hospitals indicated that, of 433 samples with reduced G6PD activity, the MeltPro assay identified 423 samples as mutant, yielding a clinical sensitivity of 97.7% (423/433). Of the 117 male samples with normal G6PD activity, the MeltPro assay confirmed that 116 samples were wild type, yielding a clinical specificity of 99.1% (116/117). Moreover, the MeltPro assay demonstrated 100% concordance with DNA sequencing for all targeted mutations. We concluded that the MeltPro G6PD assay is useful as a diagnostic or screening tool for G6PD deficiency in clinical settings.
Collapse
Affiliation(s)
- Zhongmin Xia
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian 361102, China
| | - Ping Chen
- Hemoglobin Laboratory, the First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Guangxi Zhuang Autonomous Region, Nanning 530021,China
| | - Ning Tang
- Department of Clinical Laboratory, Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi 545001, China
| | - Tizhen Yan
- Department of Clinical Laboratory, Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi 545001, China
| | - Yuqiu Zhou
- Zhuhai Institute of Medical Genetics & Department of Clinical Laboratory, Zhuhai Municipal Maternity and Child Healthcare Hospital, Zhuhai, Guangdong 519001, China
| | - Qizhi Xiao
- Zhuhai Institute of Medical Genetics & Department of Clinical Laboratory, Zhuhai Municipal Maternity and Child Healthcare Hospital, Zhuhai, Guangdong 519001, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Qingge Li
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
5
|
Zhang L, Yang Y, Liu R, Li Q, Yang F, Ma L, Liu H, Chen X, Yang Z, Cui L, He Y. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations. Int J Lab Hematol 2015; 37:739-45. [PMID: 26190099 DOI: 10.1111/ijlh.12405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. METHODS We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. RESULTS We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. CONCLUSION The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations.
Collapse
Affiliation(s)
- L Zhang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Y Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - R Liu
- The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Q Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - F Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - L Ma
- Department of Histology and Embryology, Kunming Medical University, Kunming, Yunnan Province, China
| | - H Liu
- The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - X Chen
- Kunming City Maternal and Child Health Hospital, Kunming, Yunnan Province, China
| | - Z Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - L Cui
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Y He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Yang H, Wang Q, Zheng L, Zhan XF, Lin M, Lin F, Tong X, Luo ZY, Huang Y, Yang LY. Incidence and molecular characterization of Glucose-6-Phosphate Dehydrogenase deficiency among neonates for newborn screening in Chaozhou, China. Int J Lab Hematol 2015; 37:410-419. [PMID: 25440321 DOI: 10.1111/ijlh.12303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in southern China. The aim of this study is to assess the extent of this disease in Chinese neonates and determine its molecular characteristics using a novel molecular screening method. METHODS A total of 2500 neonates were routinely screened for G6PD deficiency using a modified fluorescent spot test (FST). PCR-high-resolution melting (HRM) analysis was then used for the molecular assay. RESULTS The overall incidence of G6PD deficiency was 2.68% in our study cohort. Frequency in male population was 3.22% (44 neonates of 1365 male neonates), and in female population was 2.03% (23 neonates of 1135 female neonates). Of the 67 newborns suspected to be G6PD deficient based on FST (44 males, 23 females), 58 of 67 (87%) were detected with gene alterations. Seven kinds of mutations [c.95A>G, c.392G>T, c.493A>G, c.871G>A, c.1360C>T, c.1376G>T, and c.1388G>A] were identified by HRM analysis. CONCLUSION Routine newborn screening in Chaozhou, China with a relatively high prevalence of G6PD deficiency is justified and meets the World Health Organization recommendation. The usage of molecular diagnosis can favor the detection of heterozygotes which can be a supplement to regular newborn screening and useful for premarital and prenatal diagnosis for G6PD deficiency.
Collapse
Affiliation(s)
- H Yang
- Laboratory Medical Center, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, China; Laboratory Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Peng Q, Li S, Ma K, Li W, Ma Q, He X, He Y, He T, Lu X. Large cohort screening of G6PD deficiency and the mutational spectrum in the Dongguan District in Southern China. PLoS One 2015; 10:e0120683. [PMID: 25775246 PMCID: PMC4361187 DOI: 10.1371/journal.pone.0120683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/25/2015] [Indexed: 11/26/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. Method The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. Results The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. Conclusion The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency.
Collapse
Affiliation(s)
- Qi Peng
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Siping Li
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Keze Ma
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Wenrui Li
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Qiang Ma
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Xiaoguang He
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Yuejing He
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Ting He
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Xiaomei Lu
- The Eighth People’s Hospital of Dongguan, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
- * E-mail:
| |
Collapse
|