1
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Fu S, Du Y, Pan T, Ma F, He H, Li Y. Causal role of immune cells in aplastic anemia: Mendelian randomization (MR) study. Sci Rep 2024; 14:18010. [PMID: 39097629 PMCID: PMC11297992 DOI: 10.1038/s41598-024-69104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Prior research has identified associations between immune cells and aplastic anaemia (AA); however, the causal relationships between them have not been conclusively established. A two-sample Mendelian randomisation analysis was conducted to investigate the causal link between 731 immune cell signatures and AA risk using publicly available genetic data. Four types of immune signatures, including relative cell, absolute cell (AC), median fluorescence intensities and morphological parameters, were considered sensitivity analyses were also performed to verify the robustness of the results and assess potential issues such as heterogeneity and horizontal pleiotropy. Following multiple test adjustments using the False Discovery Rate (FDR) method, no statistically significant impact of any immunophenotype on AA was observed. However, twelve immunophenotypes exhibited a significant correlation with AA without FDR correction (p of IVW < 0.01), of which eight were harmful to AA: CD127- CD8br %T cell (Treg panel), CD25 on IgD + CD38dim (B cell panel), CD38 on naive-mature B cell (B cell panel), CD39 + resting Treg % CD4 Treg (Treg panel), CD39 + secreting Treg AC (Treg panel), CD8 on CD28 + CD45RA- CD8br (Treg panel), HLA DR + NK AC (TBNK panel), Naive DN (CD4-CD8-) AC (Maturation stages of T cell panel); and four were protective to AA: CD86 on CD62L + myeloid DC (cDC panel), DC AC (cDC panel), DN (CD4-CD8-) NKT %T cell (TBNK panel), and TD CD4 + AC (Maturation stages of T cell panel). The results of this study demonstrate a close link between immune cells and AA by genetic means, thereby improving the current understanding of the interaction between immune cells and AA risk and providing guidance for future clinical research.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yazhe Du
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Tingting Pan
- Teaching Department, The First Hospital of Jilin University, Changchun, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Hua He
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuying Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Chen H, Xie X, Ma J, Fu L, Zhao X, Xing T, Gao C, Wu R, Chen Z. Elevated TCR-αβ + double-negative T cells in pediatric patients with acquired aplastic anemia. Clin Chim Acta 2023; 548:117492. [PMID: 37479012 DOI: 10.1016/j.cca.2023.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS The pathophysiology of acquired aplastic anemia (aAA) is most associated with T cell mediated immune dysfunction, but the role of CD4- CD8- double negative T cells (DNTs) in pediatric patients with aAA is unclear. In this study, we aimed to investigate the proportion of TCR-αβ+ DNTs in pediatric patients with aAA and correlation with the response to immunosuppressive therapy (IST). MATERIALS AND METHODS Assessment of DNTs from peripheral blood was done by sensitive multi-color flow cytometry. The potential clinical value of TCR-αβ+ DNTs was then assessed by the receiver operating characteristic (ROC) curves. RESULTS The retrospective study evaluated 164 pediatric patients with aAA and 105 healthy donors (HD). Our data showed higher proportion of TCR-αβ+ DNTs in total lymphocytes [1.04% (0.79%-1.40%) vs 0.69% (0.47%-0.87%), p < 0.001] and CD3+ T cells [1.52% (1.10%-1.96%) vs 1.10% (0.70%-1.40%), p < 0.001] in aAA compared to HD. Patients with SAA/VSAA achieving complete response (CR) after IST had a higher proportion of TCR-αβ+ DNTs at initial diagnosis, than those not achieving CR for total (1.21%±0.39 vs 0.78%±0.38, p < 0.05) and CD3+ T cells (1.74%±0.53 vs 1.15%±0.59, p < 0.05). The ROC analysis showed areas under the curves (AUCs) for TCR-αβ+ DNT proportion in lymphocytes and CD3+ T cells were 0.756 (cutoff value 1.33, p < 0.05) and 0.758 (cutoff value 1.38, p < 0.05), respectively. And the complete response rate was higher in TCR-αβ+ DNT proportion high group than in TCR-αβ+ DNT proportion low group at baseline (p < 0.001). CONCLUSION Our observations suggest that elevated TCR-αβ+ DNTs seems to play a role in the pathogenesis of aAA, and it was involve in immune response to IST.
Collapse
Affiliation(s)
- Hui Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xingjuan Xie
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jie Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Lingling Fu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoxi Zhao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Tianyu Xing
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Runhui Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| | - Zhenping Chen
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
4
|
Huang J, Xu K, Yu L, Pu Y, Wang T, Sun R, Liang G, Yin L, Zhang J, Pu Y. Immunosuppression characterized by increased Treg cell and IL-10 levels in benzene-induced hematopoietic toxicity mouse model. Toxicology 2021; 464:152990. [PMID: 34673135 DOI: 10.1016/j.tox.2021.152990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Benzene is a typical hematopoietic toxic substance, that can cause serious blood and circulatory system diseases such as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia, but the immunological mechanism by which this occurs is not clear. T helper cells play a key role in regulating the immune balance in the body. In this study, benzene-induced hematopoietic toxicity BALB/c mice model was established, and changes in immune organs and T helper cell subsets (Th1, Th2, Th17 and Treg cells) were explored. At 28 days after subcutaneous injection of 150 mg/kg benzene, mice showed pancytopenia and obvious pathological damage to the bone marrow, spleen, and thymus. Flow cytometry revealed that the number of CD4+CD25+Foxp3+ Treg cells in the spleen increased significantly. The level of IL-10 in the spleen, serum, and bone marrow increased, while the levels of IL-17 in the spleen and serum decreased. Furthermore, the levels of CD4 and CD8 proteins in the spleen decreased. Immunofluorescence results showed that levels of Foxp3, a specific transcription factor that induced the differentiation of Treg cells, increased after exposure to benzene. Our results demonstrate that immunosuppression occurred in the benzene-induced hematopoietic toxicity model mice, and Treg cells and secreted IL-10 may play a key role in the process.
Collapse
Affiliation(s)
- Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Shi QZ, Yu HM, Chen HM, Liu M, Cheng X. Exosomes derived from mesenchymal stem cells regulate Treg/Th17 balance in aplastic anemia by transferring miR-23a-3p. Clin Exp Med 2021; 21:429-437. [PMID: 33779886 DOI: 10.1007/s10238-021-00701-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/07/2021] [Indexed: 12/23/2022]
Abstract
Imbalanced Th17/Treg ratio is implicated in the pathogenesis of aplastic anemia. Studies have indicated that bone marrow-derived mesenchymal stem cells-derived exosomes (BMSC-Exo) could correct imbalanced Th17/Treg in aplastic anemia, but the mechanism remains not fully understand. This study was designed to investigate whether BMSC-Exo regulates the Th17/Treg balance in aplastic anemia by transferring miR-23a-3p. Here, miR-23a-3p inhibitor was utilized to knockdown the expression of miR-23a-3p in BMSC-Exo. A co-culture system of CD4+ T cells from aplastic anemia patients and BMSC-Exo was used to explore the effects of BMSC-Exo on the Th17/Treg balance and the underlying mechanism in aplastic anemia. The patients with aplastic anemia exhibited Th17/Treg imbalance favoring the Th17 cells. BMSC-Exo could balance the percentage of Th17 and Treg cells in aplastic anemia, but the effects of BMSC-Exo can be eliminated when miR-23a-3p expression was silenced in BMSCs. IL-6 was a direct target of miR-23a-3p. IL-6 overexpression could abrogate BMSC-Exo-induced balance in Th17/Treg ratio. Overall, BMSC-Exo could balance Th17/Treg ratio in aplastic anemia via suppressing IL-6 expression by transferring miR-23a-3p at least in part. These data indicated miR-23a-3p may be a potential target for the treatment of aplastic anemia. Our study may provide a new idea for the therapy of the disease.
Collapse
Affiliation(s)
- Qing-Zhao Shi
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Hong-Mei Yu
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Hong-Mei Chen
- Department of Burn, Wuhan Third Hospital, No.241 Pengliuyang Road, Wuhan, 430060, China
| | - Miao Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Xue Cheng
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuhan, 430060, China
| |
Collapse
|
6
|
Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications. Blood Adv 2017; 1:1900-1910. [PMID: 28971166 DOI: 10.1182/bloodadvances.2017010918] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02 and HLA-B*40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.
Collapse
|
7
|
Zhang Z, Liu H, Shi Y, Xu N, Wang Y, Li A, Song W. Increased circulating Th22 cells correlated with Th17 cells in patients with severe preeclampsia. Hypertens Pregnancy 2017; 36:100-107. [PMID: 27835036 DOI: 10.1080/10641955.2016.1239737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We aimed to investigate Th22 cells and their association with Th17 and Treg cells in the etiology of severe preeclampsia (sPE). METHODS Thirty sPE patients and 30 healthy pregnant women were recruited in this study. The percentages of Th17, Th22, and regulatory T cells (Tregs) in the peripheral blood were measured by flow cytometry. ELISA was used to measure the plasma concentrations of interleukin (IL)-17, IL-22, and IL-10. RESULTS The percentages of Th17 and Th22 cells and the plasma concentrations of IL-17 and IL-22 were significantly increased in sPE patients along with a decreased percentage of Treg cells and a decreased plasma IL-10 concentration. There was a positive correlation between the levels of Th22 cells and Th17 cells in sPE patients. Moreover, a positive correlation was found between plasma IL-22 concentration and the percentage of Th22 cells in sPE patients. CONCLUSIONS Increased circulating Th22 cells, which were correlated with Th17 cells, were observed in patients with sPE. The immune imbalance between T helper (Th) cells may contribute to the pathogenesis of sPE.
Collapse
Affiliation(s)
- Zhan Zhang
- a Department of Clinical Laboratory , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
- b Shangqiu Medical College , Shangqiu , China
| | - Hui Liu
- a Department of Clinical Laboratory , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying Shi
- a Department of Clinical Laboratory , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Na Xu
- a Department of Clinical Laboratory , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuanyuan Wang
- c Department of Obstetrics and Gynecology , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Aiping Li
- a Department of Clinical Laboratory , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Wanyu Song
- c Department of Obstetrics and Gynecology , The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|