1
|
Zhao L, Qian C, Ma X, Wang X. Bioactive Products Targeting C-Met As Potential Antitumour Drugs. Anticancer Agents Med Chem 2025; 25:688-696. [PMID: 39812063 DOI: 10.2174/0118715206346207241217064022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025]
Abstract
Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis. OBJECTIVE With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours. Targeting c-met inhibitors may be an effective treatment strategy. METHODS Scientific databases such as ScienceDirect, PubMed, the Wiley Online Library, and Social Sciences Citation Index were used to collect information. All the relevant literature was reviewed, and the available literature was screened. The upstream and downstream pathways of c-Met and their relevance to antitumour effects were searched based on the articles' title, abstract, and full text. The c-Met-targeting drugs with antitumour effects are summarized below. A "citation within a citation" or snowballing approach was used in this screening process to identify additional papers that may have been missed in the initial literature screening process. High-quality studies published in peer-reviewed journals were summarized and prioritized for citation in the review. RESULTS In recent years, research on small-molecule targeted drugs has developed rapidly. Many results have also been achieved in the synthesis and isolation of c-Met inhibitors from natural compounds and traditional Chinese medicines. CONCLUSION This article summarizes the developments in anti-c-Met drugs, which are synthesized and isolated from natural compounds and traditional Chinese medicine (TCM). This study provides primary resources for the development of c-Met inhibitors.
Collapse
Affiliation(s)
- Liying Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunmei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaoqi Ma
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Lee S, Park J, Piao Y, Lee D, Lee D, Kim S. Multi-layered knowledge graph neural network reveals pathway-level agreement of three breast cancer multi-gene assays. Comput Struct Biotechnol J 2024; 23:1715-1724. [PMID: 38689720 PMCID: PMC11058099 DOI: 10.1016/j.csbj.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Multi-gene assays have been widely used to predict the recurrence risk for hormone receptor (HR)-positive breast cancer patients. However, these assays lack explanatory power regarding the underlying mechanisms of the recurrence risk. To address this limitation, we proposed a novel multi-layered knowledge graph neural network for the multi-gene assays. Our model elucidated the regulatory pathways of assay genes and utilized an attention-based graph neural network to predict recurrence risk while interpreting transcriptional subpathways relevant to risk prediction. Evaluation on three multi-gene assays-Oncotype DX, Prosigna, and EndoPredict-using SCAN-B dataset demonstrated the efficacy of our method. Through interpretation of attention weights, we found that all three assays are mainly regulated by signaling pathways driving cancer proliferation especially RTK-ERK-ETS-mediated cell proliferation for breast cancer recurrence. In addition, our analysis highlighted that the important regulatory subpathways remain consistent across different knowledgebases used for constructing the multi-level knowledge graph. Furthermore, through attention analysis, we demonstrated the biological significance and clinical relevance of these subpathways in predicting patient outcomes. The source code is available at http://biohealth.snu.ac.kr/software/ExplainableMLKGNN.
Collapse
Affiliation(s)
| | | | - Yinhua Piao
- Department of Computer Science and Engineering, South Korea
| | - Dohoon Lee
- Bioinformatics Institute, South Korea
- BK21 FOUR Intelligence Computing, South Korea
| | - Danyeong Lee
- Interdisciplinary Program in Bioinformatics, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, South Korea
- Interdisciplinary Program in Bioinformatics, South Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
3
|
Mousaei Ghasroldasht M, Liakath Ali F, Park HS, Hadizadeh M, Weng SHS, Huff A, Vafaei S, Al-Hendy A. A Comparative Analysis of Naïve Exosomes and Enhanced Exosomes with a Focus on the Treatment Potential in Ovarian Disorders. J Pers Med 2024; 14:482. [PMID: 38793064 PMCID: PMC11122298 DOI: 10.3390/jpm14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Exosome-based therapy has emerged as a promising strategy for addressing diverse disorders, indicating the need for further exploration of the potential therapeutic effects of the exosome cargos. This study introduces "enhanced exosomes", a novel type of exosomes developed through a novel cell culture system. These specific exosomes may become potent therapeutic agents for treating ovarian disorders. In this study, we conducted a comparative analysis of the protein and miRNA cargo compositions of enhanced exosomes and naïve exosomes. Our findings revealed distinct cargo compositions in enhanced exosomes, featuring upregulated proteins such as EFEMP1, HtrA1, PAM, and SDF4, suggesting their potential for treating ovarian disorders. MicroRNA profiling revealed that miR-1-3p, miR-103a-3p, miR-122-5p, miR-1271-5p, miR-133a-3p, miR-184, miR-203a-3p, and miR-206 are key players in regulating ovarian cancer and chemosensitivity by affecting cell cycle progression, cell proliferation, and cell development. We examined polycystic ovary syndrome and premature ovarian insufficiency and identified the altered expression of various miRNAs, such as miR-125b-5p and miR-130b-3p, for diagnostic insights. This study highlights the potential of enhanced exosomes as new therapeutic agents for women's reproductive health, offering a detailed understanding of the impact of their cargo on ovarian disorders.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| | - Shao Huan Samuel Weng
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Allen Huff
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| |
Collapse
|
4
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
5
|
Jafari H, Mahami-Oskouei M, Spotin A, Baradaran B, Shanehbandi D, Baghbanzadeh A, Alizadeh Z. MicroRNA-1 Inhibits the Growth of Breast Cancer Cells MDA-MB-231 and MCF-7 Treated with Hydatid Cyst Fluid. J Trop Med 2024; 2024:7474039. [PMID: 38504949 PMCID: PMC10950417 DOI: 10.1155/2024/7474039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Antigens in hydatid cyst fluid (HCF) have been discovered to bear a significant resemblance to antigens present in cancer cells. MicroRNA-1 (miR-1) is a well-known member of the tumor inhibitor miRNA family and has been shown to have pro-apoptotic and tumor-inhibitory functions. This study aimed to evaluate the ability of HCF to prevent breast cancer and to explore the underlying mechanisms that affect cancer cells. For this study, MDA-MB-231 and MCF-7 breast cancer cells were cultured and divided into two groups: one group received HCF treatment and the other group was untreated and served as the control group. The cytotoxicity and cell viability of various HCF concentrations on breast cancer cells were evaluated using the MTT assay. In addition, the expression level of miR-1 in HCF-treated and untreated breast cancer cells was analyzed using qRT-PCR. The study found that HCF treatment reduced the growth of MDA-MB-231 and MCF-7 breast cancer cells, indicating that it was cytotoxic to the cells. Specifically, the IC50 concentration of HCF after 24 hours of treatment was 7.32 µg/mL for MDA-MB-231 cells and 13.63 µg/mL for MCF-7 cells. In addition, qRT-PCR analysis revealed that the expression level of miR-1 was significantly increased in HCF-treated MDA-MB-231 (P=0.0203) and MCF-7 (P=0.0394) cell lines compared to untreated controls. Although HCF has been shown to inhibit the growth of breast cancer cells and to upregulate miR-1, a key tumor suppressor in cancer cells, the specific mechanisms responsible for this effect remain unclear. Further studies are needed to fully understand the molecular pathways underlying HCF's antitumor activity and its potential as a therapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Hadis Jafari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Mahami-Oskouei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Alizadeh
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
8
|
Cai J, Hu Q, He Z, Chen X, Wang J, Yin X, Ma X, Zeng J. Scutellaria baicalensis Georgi and Their Natural Flavonoid Compounds in the Treatment of Ovarian Cancer: A Review. Molecules 2023; 28:5082. [PMID: 37446743 DOI: 10.3390/molecules28135082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.
Collapse
Affiliation(s)
- Jiaying Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhelin He
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiaoyan Chen
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Jian Wang
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiang Yin
- Endoscopy Center, Guang'an Hospital of Traditional Chinese Medicine, Guang'an 638000, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
9
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Centre for Cardiovascular Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal Campus, Manipal, Karnataka 576104, India
| | - Padmanaban S. Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
10
|
Pronina IV, Uroshlev LA, Moskovtsev AA, Zaichenko DM, Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA, Brovkina OI. Dysregulation of lncRNA–miRNA–mRNA Interactome as a Marker of Metastatic Process in Ovarian Cancer. Biomedicines 2022; 10:biomedicines10040824. [PMID: 35453574 PMCID: PMC9031843 DOI: 10.3390/biomedicines10040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA–miRNA–mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial–mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1–miR-203a–c-MET and OIP5-AS1–miR-203a–ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.
Collapse
Affiliation(s)
- Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Leonid A. Uroshlev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Tatiana P. Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Correspondence:
| | - Olga I. Brovkina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Federal Research and Clinical Center of Federal Medical-Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
11
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Gaia-Oltean AI, Braicu C, Gulei D, Ciortea R, Mihu D, Roman H, Irimie A, Berindan-Neagoe I. Ovarian endometriosis, a precursor of ovarian cancer: Histological aspects, gene expression and microRNA alterations (Review). Exp Ther Med 2021; 21:243. [PMID: 33603851 PMCID: PMC7851621 DOI: 10.3892/etm.2021.9674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Ovarian endometriosis is a frequent chronic gynecological disease with an uncertain evolution regarding its progression or association with ovarian malignant lesions. The present review summarized the histological aspects, gene expression and microRNA (miRNA/miR) alterations associated with ovarian endometriosis and cancer and their possible interaction. The endometriosis-ovarian cancer interaction has been proposed by certain researchers as a single entity. Histological results indicated that endometriosis has been in different circumstances coexisting with ovarian cancer, with reference to endometrioid and clear cell carcinoma. Endometriosis with moderate and severe atypia can influence cell proliferation and architecture, resulting in a possible malignant transformation. Gene expression analysis indicated that the pathologies of both endometriosis and ovarian cancer are characterized by genetic instability from a molecular point of view, as several important genetic mutations, including ARID1A, PI3KCA, PTEN, BRCA1, BRCA2, TP53 and KRAS genes, were identified. miRNA alterations have been implicated in the regulation of gene expression. Common dysregulated miRNAs, such as miR-331, miR-335, miR-891, miR-548, miR-124, miR-148, miR-215, miR-192, miR-337, miR-153, miR-155, miR-144, miR-221 and miR-3688 were extensively investigated in understanding endometriosis and ovarian cancer evolution. From a combined viewpoint including histological aspects, gene expression and miRNA alterations, it is reasonable to speculate that endometriosis is associated with ovarian cancer. Ovarian endometriosis lesions may present a risk for ovarian malignant lesions, which supports a model of endometriosis as a malignant precursor. However, the endometriosis-ovarian cancer association is not widely accepted in the literature and additional studies are required to validate this association.
Collapse
Affiliation(s)
- Adriana Ioana Gaia-Oltean
- Department of Oncological Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania
| | - Diana Gulei
- MedFuture-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania
| | - Razvan Ciortea
- Second Department of Obstetrics and Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania
| | - Dan Mihu
- Second Department of Obstetrics and Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania
| | - Horace Roman
- Center of Endometriosis, Clinique Tivoli-Ducos, 33000 Bordeaux, France
| | - Alexandru Irimie
- Department of Oncological Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.,MedFuture-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncology Institute 'Prof. Dr. Ion Chiricuta', 400015 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Li Q, Shi J, Xu X. MicroRNA-1271-5p inhibits the tumorigenesis of ovarian cancer through targeting E2F5 and negatively regulates the mTOR signaling pathway. Panminerva Med 2020; 63:336-342. [PMID: 32414231 DOI: 10.23736/s0031-0808.20.03939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND MicroRNA-1271-5p (miR-1271-5p) has been reported to participate in the progression of many human cancers. However, the role of miR-1271-5p still remains unclear in ovarian cancer (OC). Therefore, we explored the effect of miR-1271-5p on the development of OC in present study. METHODS We measured the miR-1271-5p expression via the qRT-PCR assay. Then the function of miR-1271-5p was analyzed through MTT and Transwell assays. The relationship among miR-1271-5p and E2F5 was verified by dual luciferase assay. The protein expression levels were examined through western blot. RESULTS MiR-1271-5p was downregulated in OC tissues which predicted poor prognosis of OC patients. Moreover, E2F5 was a direct target of miR-1271-5p in OC. And miR-1271-5p suppressed cell proliferation, migration and invasion in OC through targeting E2F5. Furthermore, E2F5 was upregulated in OC tissues which predicted poor prognosis of OC patients. Besides that, miR-1271-5p suppressed EMT and mTOR pathway in OC. CONCLUSIONS MiR-1271-5p inhibited the tumorigenesis of OC through targeting E2F5 and negatively regulated the mTOR signaling pathway.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Junyu Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xiaoli Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China -
| |
Collapse
|
14
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
15
|
Zou X, Lu T, Zhao Z, Liu G, Lian Z, Guo Y, Sun B, Liu D, Li Y. Comprehensive analysis of mRNAs and miRNAs in the ovarian follicles of uniparous and multiple goats at estrus phase. BMC Genomics 2020; 21:267. [PMID: 32228439 PMCID: PMC7106838 DOI: 10.1186/s12864-020-6671-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Fertility is an important economic trait in the production of meat goat, and follicular development plays an important role in fertility. Although many mRNAs and microRNAs (miRNAs) have been found to play critical roles in ovarian biological processes, the interaction between mRNAs and miRNAs in follicular development is not yet completely understood. In addition, less attention has been given to the study of single follicle (dominant or atretic follicle) in goats. This study aimed to identify mRNAs, miRNAs, and signaling pathways as well as their interaction networks in the ovarian follicles (large follicles and small follicles) of uniparous and multiple Chuanzhong black goats at estrus phase using RNA-sequencing (RNA-seq) technique. Results The results showed that there was a significant difference in the number of large follicles between uniparous and multiple goats (P < 0.05), but no difference in the number of small follicles was observed (P > 0.05). For the small follicles of uniparous and multiple goats at estrus phase, 289 differentially expressed mRNAs (DEmRNAs) and 16 DEmiRNAs were identified; and for the large follicles, 195 DEmRNAs and 7 DEmiRNAs were identified. The functional enrichment analysis showed that DE genes in small follicles were significantly enriched in ovarian steroidogenesis and steroid hormone biosynthesis, while in large follicles were significantly enriched in ABC transporters and steroid hormone biosynthesis. The results of quantitative real-time polymerase chain reaction were consistent with those of RNA-seq. Analysis of the mRNA-miRNA interaction network suggested that CD36 (miR-122, miR-200a, miR-141), TNFAIP6 (miR-141, miR-200a, miR-182), CYP11A1 (miR-122), SERPINA5 (miR-1, miR-206, miR-133a-3p, miR-133b), and PTGFR (miR-182, miR-122) might be related to fertility, but requires further research on follicular somatic cells. Conclusions This study was used for the first time to reveal the DEmRNAs and DEmiRNAs as well as their interaction in the follicles of uniparous and multiple goats at estrus phase using RNA-seq technology. Our findings provide new clues to uncover the molecular mechanisms and signaling networks of goat reproduction that could be potentially used to increase ovulation rate and kidding rate in goat.
Collapse
Affiliation(s)
- Xian Zou
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tingting Lu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhifeng Zhao
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
16
|
Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Front Cell Dev Biol 2020; 8:145. [PMID: 32219093 PMCID: PMC7078111 DOI: 10.3389/fcell.2020.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Hong Zhan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Liu X, Sun R, Chen J, Liu L, Cui X, Shen S, Cui G, Ren Z, Yu Z. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Front Cell Dev Biol 2020; 8:23. [PMID: 32083078 PMCID: PMC7004951 DOI: 10.3389/fcell.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Ghafouri-Fard S, Shoorei H, Taheri M. miRNA profile in ovarian cancer. Exp Mol Pathol 2020; 113:104381. [PMID: 31954715 DOI: 10.1016/j.yexmp.2020.104381] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Ovarian cancer is a gynecological cancer with high mortality and a heterogeneous nature which complicates its early detection and primary prevention. Numerous studies have evaluated expression profile microRNAs (miRNAs) in tissue and serum samples of ovarian cancer patients to find appropriate biomarkers for this malignancy. Functional experiments also verified the oncogenic or suppressor effects of a number of miRNAs. miRNAs exert their role through degradation or inhibition of translation of the target mRNA. Through this regulatory function, they modulate numerous cellular processes which are ultimately associated with carcinogenesis. A number of miRNAs including miR-135a-3p, miR-200c, miR-216a and miR-340 regulate epithelial-mesenchymal transition program thus modulate invasiveness of ovarian cancer cell. Others have been shown to regulate some fundamental pathways in carcinogenesis such as mTOR and PI3K/AKT pathways. Such vast area of function of miRNAs in ovarian cancer has suggested them as putative therapeutic options for future years. In this review, we summarize the recent findings regarding the role of miRNAs in ovarian cancer pathogenesis, their application as biomarkers and the future perspectives of this research area.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
20
|
MicroRNA-34a suppresses human lens epithelial cell proliferation and migration via downregulation of c-Met. Clin Chim Acta 2019; 495:326-330. [PMID: 30980790 DOI: 10.1016/j.cca.2019.04.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding, small RNAs which inhibit protein translation through binding to target mRNAs. Recent studies have demonstrated that miRNAs participate in the regulation of a variety of cell structures and functions including those for cell proliferation and migration. MicroRNA-34a (miR-34a), a potential effector of the p53 tumor suppressor gene, is extensively studied for its suppression of cell growth. In the present study, we investigated the function of miR-34a in human lens epithelial cells. Following confirming that miR-34a expression was increased in a P53 dependent manner in human lens epithelial cells after treatment with doxorubicin, we demonstrated that overexpression of miR-34a in the human lens epithelial cell line HLE B3 led to a significant decrease in cell proliferation and migration, with the use of MTS and transwell migration assays. Moreover, HGF enhanced the proliferation and migration of human lens epithelial cells. miR-34a was found to downregulate the expression of c-Met protein by Western blotting. Furthermore, overexpression of miR-34a downregulated the levels of phosphorylated Akt, phosphorylated ERK1/2 and other cell cycle regulators. miR-34a expression was significantly reduced in posterior capsule opacification (PCO) clinical samples. These results demonstrate that miR-34a may act as a suppressor in PCO by regulating human lens epithelial cell proliferation and migration through downregulation of c-Met.
Collapse
|
21
|
Gao S, Zhao Z, Wu R, Wu L, Tian X, Zhang Z. MiR-1 inhibits prostate cancer PC3 cells proliferation through the Akt/mTOR signaling pathway by binding to c-Met. Biomed Pharmacother 2019; 109:1406-1410. [DOI: 10.1016/j.biopha.2018.10.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
|
22
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
23
|
Jiao D, Chen J, Li Y, Tang X, Wang J, Xu W, Song J, Li Y, Tao H, Chen Q. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J Cell Mol Med 2018; 22:3526-3536. [PMID: 29664235 PMCID: PMC6010770 DOI: 10.1111/jcmm.13629] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR-1-3p and miR-206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR-1-3p and miR-206 can overcome HGF-induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR-1-3p and miR-206 restored the sensitivities of lung cancer cells PC-9 and HCC-827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR-1-3p and miR-206 directly target HGF receptor c-Met in lung cancer. Knockdown of c-Met mimicked the effects of miR-1-3p and miR-206 transfections Meanwhile, c-Met overexpression attenuated the effects of miR-1-3p and miR-206 in HGF-induced gefitinib resistance of lung cancers. Furthermore, we showed that miR-1-3p and miR-206 inhibited c-Met downstream Akt and Erk pathway and blocked HGF-induced epithelial-mesenchymal transition (EMT). Finally, we demonstrated that miR-1-3p and miR-206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR-1-3p and miR-206 in overcoming HGF-induced gefitinib resistance in EGFR mutant lung cancer cell.
Collapse
Affiliation(s)
- Demin Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Yu Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Xiali Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Wei Xu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - You Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Huimin Tao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Qingyong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Chen SF, Liu Z, Chaurasiya S, Dellinger TH, Lu J, Wu X, Qin H, Wang J, Fong Y, Yuan YC. Identification of core aberrantly expressed microRNAs in serous ovarian carcinoma. Oncotarget 2018; 9:20451-20466. [PMID: 29755664 PMCID: PMC5945511 DOI: 10.18632/oncotarget.24942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have recently demonstrated great potential and enormous promise in the diagnosis, prognosis and therapy of various types of cancer. In this study, we performed a comprehensive miRNA expression analysis in the omental metastasis of serous ovarian carcinoma (SOC) using small RNA sequencing. Two hundred and fifty-one aberrantly expressed miRNAs were identified, which clearly separated malignant omentum from normal omentum. Furthermore, miRNA profiles in primary chemo-sensitive and chemo-resistant/refractory SOC were determined using publicly available data. Comparing miRNA expression profiles in omental metastases and primary chemo-sensitive and chemo-resistant/refractory tumors, a set of 70 miRNAs that were aberrantly expressed in both primary and metastatic SOC has been identified for the first time. These core aberrantly expressed miRNAs may play crucial roles in the tumorigenesis, growth, and metastasis of SOC. Therefore, they can serve as potential diagnostic biomarkers and as therapeutic targets for miRNA-mediated therapy. Kaplan-Meier overall survival analysis using The Cancer Genome Atlas data demonstrated that 10 miRNAs (hsa-miR-135, 150, -340, 625, 1908, 3187, -96, -196b, -449c, and -1275) were associated with survival of patients with SOC, which may serve as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Steven F. Chen
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Zheng Liu
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Thanh H. Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Hanjun Qin
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| |
Collapse
|