1
|
Tan M, Liu X, Zhang Y, Yin Y, Chen T, Li Y, Feng L, Zhu B, Xu C, Tang C, Sun M, Jia L, Jin W, Fan C, Huang H, Wang X, Feng J, Zou H, Han L, Miao J, Zhu B, Huang C, Huang Y. Molecular epidemiological characteristics, variant spectrum and genotype-phenotype correlation of glucose-6-phosphate dehydrogenase deficiency in China: A population-based multicenter study using newborn screening. PLoS One 2024; 19:e0310517. [PMID: 39436963 PMCID: PMC11495603 DOI: 10.1371/journal.pone.0310517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS Newborn screening (NBS) for glucose-6-phosphate dehydrogenase (G6PD) deficiency by biochemical tests is being used worldwide, however, the outcomes arising from combined genetic and biochemical tests have not been evaluated. This research aimed to evaluate the outcomes of application of combined genetic and biochemical NBS for G6PD deficiency and to investigate the molecular epidemiological characteristics, variant spectrum, and genotype-phenotype correlation of G6PD deficiency in China. METHODS A population-based cohort of 29,601 newborns were prospectively recruited from eight NBS centers in China between February 21 and December 30, 2021. Biochemical and genetic NBS was conducted simultaneously. RESULTS The overall prevalence of G6PD deficiency was 1.12% (1.86% for male, and 0.33% for female; 1.94% for South China and 0.08% for North China). Genetic NBS identified 10 male patients undetected by biochemical NBS. The overall positive predictive values (PPVs) of biochemical and genetic NBS were 79.95% and 47.57%, respectively. A total of 15 variants were identified, with the six most common variants being c.1388G > A, c.1376G > T, c.95A > G, c.871G > A, c.1024C > T and c.392G > T (94.2%). The activity of G6PD was correlated with the type and WHO classification of variants. CONCLUSION This study highlighted that combined screening could enhance the efficiency of current NBS for diagnosing G6PD deficiency. The prevalence, variant spectrum and allele frequency of G6PD deficiency vary across different regions. Our data provide valuable references for clinical practice and optimization of future screening strategies for G6PD deficiency.
Collapse
Affiliation(s)
- Minyi Tan
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Xiulian Liu
- Department of Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Hainan, Haikou, China
| | - Yinhong Zhang
- Department of Medical Genetics, The First People’s Hospital of Yunnan Province, National Health Commission Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yifan Yin
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yulin Li
- Department of Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lulu Feng
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Hebei Shijiazhuang, China
| | - Bo Zhu
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, Hohhot, China
| | - Chunjing Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Meng Sun
- Department of Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Liyun Jia
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Hebei Shijiazhuang, China
| | - Weiwei Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Chunna Fan
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, Inner Mongolia, Hohhot, China
| | - Jizhen Feng
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Hebei Shijiazhuang, China
| | - Hui Zou
- Department of Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Miao
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Baosheng Zhu
- Department of Medical Genetics, The First People’s Hospital of Yunnan Province, National Health Commission Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Cidan Huang
- Department of Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Hainan, Haikou, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hung YL, Chang PF, Huang CS. Molecular biology of glucose-6-phosphate dehydrogenase and UDP-glucuronosyltransferase 1A1 in the development of neonatal unconjugated hyperbilirubinemia. Pediatr Neonatol 2024; 65:419-426. [PMID: 38480019 DOI: 10.1016/j.pedneo.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 09/10/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and variants of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene are the most common genetic causes of neonatal unconjugated hyperbilirubinemia (NUH). In this review, we searched PubMed for articles on the genetic causes of NUH published before December 31, 2022, and analyzed the data. On the basis of the results, we reached eight conclusions: (1) 37 mutations of the G6PD gene are associated with NUH; (2) the clinical manifestation of G6PD deficiency depends not only on ethnicity but also on the molecular mechanisms underlying the deficiency (and thus its severity); (3) of mutations in the UGT1A1 gene, homozygous c.-53A(TA)6TAA > A(TA)7TAA is the main cause of NUH in Caucasians and Africans, whereas homozygous c.211G > A is the main genetic cause of NUH in East Asians; (4) in Indonesian neonates, homozygous c.-3279T > G is the most common cause of NUH development, and neither c.-53 A(TA)6TAA > A(TA)7TAA nor c.211G > A causes it; (5) in breast-fed East Asian neonates, the TA7 repeat variant of the UGT1A1 gene protects against the development of NUH; (6) G6PD deficiency combined with homozygous c.211G > A variation of the UGT1A1 gene increases the risk of severe NUH; (7) in Pakistani and Caucasian patients with Crigler-Najjar syndrome type 2 (CN-2), point mutations of the UGT1A1 gene are widely distributed and frequently occur with variation at nucleotide -53, whereas in Asian patients with CN-2, compound homozygous variations in the coding region are frequently observed; and (8) records of G6PD deficiency and UGT1A1 variation status for a neonate offer useful pharmacogenomic information that can aid long-term care. These results indicate that timely diagnosis of NUH through molecular tests is crucial and that early initiation of treatment for the neonates and educational programs for their parents improves outcomes.
Collapse
Affiliation(s)
- Yi-Li Hung
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; School of Medicine, National Tsing-Hua University, Hsinchu City, Taiwan
| | - Pi-Feng Chang
- Department of Pediatrics, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei City, Taiwan; Department of Electronic Engineering, Oriental Institute of Technology, Pan-Chiao, New Taipei City, Taiwan
| | - Ching-Shan Huang
- Department of Clinical Pathology, Cathay General Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Alangari AS, El-Metwally AA, Alanazi A, Al Khateeb BF, Al Kadri HM, Alshdoukhi IF, Aldubikhi AI, Alruwaili M, Alshahrani A. Epidemiology of Glucose-6-Phosphate Dehydrogenase Deficiency in Arab Countries: Insights from a Systematic Review. J Clin Med 2023; 12:6648. [PMID: 37892786 PMCID: PMC10607133 DOI: 10.3390/jcm12206648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common metabolic disorder affecting more than 400 million individuals worldwide. Being an X-linked disorder, the disease is more common among males than females. Various Arab countries estimated the prevalence of G6PD deficiency; however, findings from different countries have not been synthesized collectively. Hence, a systematic review was undertaken to synthesize the findings on the epidemiology of G6PD deficiency in all Arab countries. We performed an electronic systematic literature search based on the eligibility criteria using databases, including MEDLINE, Embase, and CINHAL. The studies included in the review were primary and original research studies assessing the prevalence or incidence, risk factors, or determinants of G6PD deficiency, and published in the English language in a peer-reviewed scientific journal between 2000 and 2022. The systematic review was carried out with the help of an updated PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. After the screening, 23 full texts were finalized for data extraction. The prevalence of G6PD deficiency ranged from 2 to 31% with a greater burden among high-risk populations like neonates with sickle cell anemia. The determinants included males, family history, consanguineous marriages, and geographic regions, which were all risk factors, except for body weight, which was a protective factor. The prevalence of G6PD deficiency varies across Arab countries, with a higher prevalence in males than females. Different regions of Arab countries need to revisit their screening and diagnostic guidelines to detect G6PD deficiency promptly and prevent unnecessary morbidity and mortality among their communities.
Collapse
Affiliation(s)
- Abdulaziz S. Alangari
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Ashraf A. El-Metwally
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Abdullah Alanazi
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Badr F. Al Khateeb
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Family Medicine, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hanan M. Al Kadri
- College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Obstetrics and Gynecology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ibtehaj F. Alshdoukhi
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | | | - Muzun Alruwaili
- College of Medical Sciences, North Border University, Arar 91431, Saudi Arabia
| | - Awad Alshahrani
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
4
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Rojas-Alarcón MA, Vázquez-Bautista M, Arreguin-Espinosa R, Pérez de la Cruz V, Castillo-Rodríguez RA, Canseco-Ávila LM, Vidal-Limón A, Gómez-Manzo S. An Overall View of the Functional and Structural Characterization of Glucose-6-Phosphate Dehydrogenase Variants in the Mexican Population. Int J Mol Sci 2023; 24:12691. [PMID: 37628871 PMCID: PMC10454679 DOI: 10.3390/ijms241612691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Miriam Abigail Rojas-Alarcón
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Montserrat Vázquez-Bautista
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | | | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico;
| | - Abraham Vidal-Limón
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
| |
Collapse
|
5
|
Li Z, Huang Z, Liu Y, Cao Y, Li Y, Fang Y, Huang M, Liu Z, Lin L, Jiang L. Genotypic and phenotypic characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Guangzhou, China. Hum Genomics 2023; 17:26. [PMID: 36949502 PMCID: PMC10035184 DOI: 10.1186/s40246-023-00473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND G6PD deficiency is a common inherited disorder worldwide and has a higher incidence rate in southern China. Many variants of G6PD result from point mutations in the G6PD gene, leading to decreased enzyme activity. This study aimed to analyse the genotypic and phenotypic characteristics of G6PD deficiency in Guangzhou, China. METHODS In this study, a total of 20,208 unrelated participants were screened from 2020 to 2022. G6PD deficiency was further analysed by quantitative enzymatic assay and G6PD mutation analysis. The unidentified genotype of the participants was further ascertained by direct DNA sequencing. RESULTS A total of 12 G6PD mutations were identified. Canton (c.1376G>T) and Kaiping (c.1388G>A) were the most common variants, and different mutations led to varying levels of G6PD enzyme activity. Comparing the enzyme activities of the 6 missense mutations between the sexes, we found significant differences (P < 0.05) in the enzyme activities of both male hemizygotes and female heterozygotes. Two previously unreported mutations (c.1438A>T and c.946G>A) were identified. CONCLUSIONS This study provided detailed genotypes of G6PD deficiency in Guangzhou, which could be valuable for diagnosing and researching G6PD deficiency in this area.
Collapse
Affiliation(s)
- Ziyan Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenyi Huang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunshan Cao
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yating Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanping Fang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiying Huang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixi Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lingxiao Jiang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Alcántara-Ortigoza MA, Hernández-Ochoa B, González-Del Angel A, Ibarra-González I, Belmont-Martínez L, Gómez-Manzo S, Vela-Amieva M. Functional characterization of the p.(Gln195His) or Tainan and novel p.(Ser184Cys) or Toluca glucose-6-phosphate dehydrogenase (G6PD) gene natural variants identified through Mexican newborn screening for glucose-6-phosphate dehydrogenase deficiency. Clin Biochem 2022; 109-110:64-73. [PMID: 36089067 DOI: 10.1016/j.clinbiochem.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Newborn screening for glucose-6-phosphate dehydrogenase deficiency (G6PDd) was implemented in Mexico beginning in 2017. In a Mexican population, genotyping analysis of G6PD as a second-tier method identified a previously unreported missense variant, p.(Ser184Cys), which we propose to call "Toluca", and the extremely rare p.(Gln195His) or "Tainan" variant, which was previously described in the Taiwanese population as a Class II allele through in silico evaluations. Here, we sought to perform in vitro biochemical characterizations of the Toluca and Tainan G6PD natural variants and describe their associated phenotypes. METHODS The "Toluca" and "Tainan" variants were identified in three unrelated G6PDd newborn males, two of whom lacked evidence of acute hemolytic anemia (AHA) or neonatal hyperbilirubinemia (NHB). We constructed wild-type (WT), Tainan, and Toluca G6PD recombinant enzymes and performed in vitro assessments. RESULTS Both variants had diminished G6PD expression, decreased affinities for glucose-6-phosphate and NADP+ substrates, significant decreases in catalytic efficiency (∼97 % with respect to WT-G6PD), and diminished thermostabilities that were partially rescued by NADP+. In silico protein modeling predicted that the variants would have destabilizing effects on the protein tertiary structure, potentially reducing the enzyme half-lives and/or catalytic efficiencies. CONCLUSION Our data suggest that G6PD "Tainan" and "Toluca" are potential Class II natural variants, which agrees with the absence of chronic nonspherocytic hemolytic anemia (CNSHA) in our patients. It remains to be determined whether these variants represent high-risk genetic factors for developing CNSHA, AHA, and/or NHB.
Collapse
Affiliation(s)
- Miguel A Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, CP 06720, Ciudad de México, Mexico
| | - Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Pediatría, CP 04530, Ciudad de México, Mexico
| | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Bahr TM, Agarwal AM, Meznarich JA, Prince WL, Wait TWP, Prchal JT, Christensen RD. Thirty-five males with severe (Class 1) G6PD deficiency (c.637G>T) in a North American family of European ancestry. Blood Cells Mol Dis 2021; 92:102625. [PMID: 34773909 DOI: 10.1016/j.bcmd.2021.102625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
In North America, jaundiced neonates are not usually tested for G6PD deficiency if the family is of European ancestry. However, we describe such a family where ≥35 males have had severe (Class I) G6PD deficiency. Many of the jaundiced neonates did not have this diagnosis considered, at least three of whom developed bilirubin neurotoxicity. Over seven generations 35 affected males were identified. Three developed signs of kernicterus spectrum disorder; three had exchange transfusions for hyperbilirubinemia; and nine received one or more blood transfusions during childhood.
Collapse
Affiliation(s)
- Timothy M Bahr
- Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Neonatology, Intermountain Healthcare, Murray, UT, USA.
| | - Archana M Agarwal
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Jessica A Meznarich
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT, USA
| | | | - Tirzah W P Wait
- Internal Medicine Service, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Josef T Prchal
- Division of Hematology, Department of Internal Medicine, University of Utah Health, the Huntsman Cancer Institute, and the George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Robert D Christensen
- Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Division of Hematology/Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT, USA; Neonatology, Intermountain Healthcare, Murray, UT, USA
| |
Collapse
|
8
|
Wang X, Xia Z, He Y, Zhou X, Zhang H, Gao C, Ge Y, Cai X, Zhou Y, Guo Q. Newborn Screening for G6PD Deficiency in Xiamen, China: Prevalence, Variant Spectrum, and Genotype-Phenotype Correlations. Front Genet 2021; 12:718503. [PMID: 34659341 PMCID: PMC8517332 DOI: 10.3389/fgene.2021.718503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymatic defect. The purpose of this study was to evaluate the profile of G6PD deficiency and investigate the factors associated with the accuracy of newborn screening (NBS) in Xiamen, China. Methods: A total of 99,546 newborns were screened by modified fluorescent spot test at the Women and Children’s Hospital, Xiamen University. High-risk neonates were recalled for diagnosis by either a measurement of G6PD activity or genetic testing for the presence of pathogenic G6PD variants using a quantitative G6PD enzymatic assay or the MeltPro® G6PD assay, respectively. Results: In the first-tier screening, 1,256 newborns were categorized as high risk. Of these, 1,051 were diagnosed with G6PD deficiency, indicating a prevalence of 1.39% in Xiamen, China. Among the 1,013 neonates who underwent genotyping, 851 carried hemizygous, heterozygous, homozygous, or compound heterozygous variants, for a positive predictive value (PPV) of 84.01%. In total, 12 variants and 32 genotypes were identified, and the six most common variants were c.1376G>T, c.1388G>A, c.95A>G, c.1024C>T, c.871G>A, and c.392G>T, which accounted for approximately 94% of the identified alleles. Different variants showed characteristic enzymatic activities, although high phenotypic heterogeneity was observed for each variant. The use of cold-chain transportation significantly improved the PPV of NBS. Conclusions: We determined the profile of G6PD deficiency in Xiamen, including the prevalence, variant spectrum, and genotype-phenotype correlations and confirmed that maintaining a low temperature during sample transport is essential to ensure the high screening accuracy of NBS. Our data provides epidemiological, genotypic, phenotypic, and clinical practice references to standardize future interventions for G6PD deficiency.
Collapse
Affiliation(s)
- Xudong Wang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Ying He
- Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoman Zhou
- School of Medicine, Xiamen University, Xiamen, China
| | - Haixia Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Chunliu Gao
- School of Public Health, Xiamen University, Xiamen, China
| | - Yunsheng Ge
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Xiaofang Cai
- Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Gao J, Lin S, Chen S, Wu Q, Zheng K, Su J, Guo Z, Duan S. Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency in the Shenzhen Population. Hum Hered 2021; 85:110-116. [PMID: 34134107 DOI: 10.1159/000516808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. This study aimed to characterize the G6PD gene variant distribution in Shenzhen of Guangdong province. METHODS A total of 33,562 individuals were selected at the hospital for retrospective analysis, of which 1,213 cases with enzymatic activity-confirmed G6PD deficiency were screened for G6PD gene variants. Amplification refractory mutation system PCR was first used to screen the 6 dominant mutants in the Chinese population (c.1376G>T, c.1388G>A, c.95A>G, c.1024C>T, c.392G>T, and c.871G>A). If the 6 hotspot variants were not found, next-generation sequencing was then performed. Finally, Sanger sequencing was used to verify all the mutations. RESULTS The incidence of G6PD deficiency in this study was 3.54%. A total of 26 kinds of mutants were found in the coding region, except for c.-8-624T>C, which was in the noncoding region. c.1376G>T and c.1388G>A, both located in exon 12, were the top 2 mutants, accounting for 68.43% of all individuals. The 6 hotspot mutations had a cumulative proportion of 94.02%. CONCLUSIONS This study provided detailed characteristics of G6PD gene variants in Shenzhen, and the results would be valuable to enrich the knowledge of G6PD deficiency.
Collapse
Affiliation(s)
- Jian Gao
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China,
| | - Sheng Lin
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| | - Shiguo Chen
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| | - Qunyan Wu
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| | - Kaifeng Zheng
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| | - Jindi Su
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| | - Zhaopeng Guo
- Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, China
| |
Collapse
|
10
|
Dai W, Yang T, Wang Y, Zhao Q, Zhan Y, Ye J, Han L, Qiu W, Zhang H, Liang L, Gu X, Yu Y. Rapid detection of twenty-nine common Chinese glucose-6-phosphate dehydrogenase variants using a matrix-assisted laser desorption/ionization-time of flight mass spectrometry assay on dried blood spots. Clin Biochem 2021; 94:27-34. [PMID: 33882285 DOI: 10.1016/j.clinbiochem.2021.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disease. Current neonatal screening methods for G6PD deficiency primarily rely on the use of biochemical tests. However, only 15%-20% of female carriers were estimated to have been detected using these tests. As a better alternative, DNA-based tests could be used for G6PD deficiency screening. We aimed to develop a matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay for G6PD variant detection. METHODS A MALDI-TOF MS assay with multiprimer extension (multi-PEX) was developed to rapidly and accurately detect the 29 common G6PD variants in the Chinese population using a dried blood spot as a template. A parallel study screening 571 unrelated neonatal samples using the MALDI-TOF MS and fluorescence quantitative enzymatic assays was performed. All results were confirmed by Sanger sequencing in a blind study. RESULTS In 571 unrelated neonatal samples, 34 positive samples, including 26 samples from hemizygous males and eight samples from heterozygous females, were correctly identified, yielding a clinical sensitivity of 100%. The results were validated using Sanger sequencing with 100% concordance. In contrast, the fluorescence quantitative enzymatic assay had a 75% false negative and 88.8% false positive rate for the detection of heterozygous G6PD deficient females. CONCLUSIONS We established a reliable MALDI-TOF MS assay for G6PD deficiency screening in the Chinese population maximizing the chance of detection of heterozygous G6PD deficient females and reducing the false negative and false positive rates associated with routinely used newborn screening procedures.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Tingting Yang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Qianfeng Zhao
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
11
|
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of Glucose-6-phosphate dehydrogenase deficiency. Pharmacol Ther 2020; 222:107788. [PMID: 33326820 DOI: 10.1016/j.pharmthera.2020.107788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022]
Abstract
Glucose-6-phospate dehydrogenase (G6PD) deficiency is estimated to affect more than 400 million people world-wide. This X-linked genetic deficiency puts stress on red blood cells (RBC), which may be further augmented under certain pathophysiological conditions and drug treatments. These conditions can cause hemolytic anemia and eventually lead to multi-organ failure and mortality. G6PD is involved in the rate-limiting step of the pentose phosphate pathway, which generates reduced nicotinamide adenine dinucleotide phosphate (NADPH). In RBCs, the NADPH/G6PD pathway is the only source for recycling reduced glutathione and provides protection from oxidative stress. Susceptibility of G6PD deficient populations to certain drug treatments and potential risks of hemolysis are important public health issues. A number of clinical trials are currently in progress investigating clinical factors associated with G6PD deficiency, validation of new diagnostic kits for G6PD deficiency, and evaluating drug safety, efficacy, and pathophysiology. More than 25 clinical studies in G6PD populations are currently in progress or have just been completed that have been examined for clinical pharmacology and potential therapeutic implications of G6PD deficiency. The information on clinical conditions, interventions, purpose, outcome, and status of these clinical trials has been studied. A critical review of ongoing clinical investigations on pharmacology and therapeutics of G6PD deficiency should be highly important for researchers, clinical pharmacologists, pharmaceutical companies, and global public health agencies. The information may be useful for developing strategies for treatment and control of hemolytic crisis and potential drug toxicities in G6PD deficient patients.
Collapse
Affiliation(s)
- Kaitlyn Ryan
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, 2000 9(th) Avenue South, Birmingham, AL 35205, United States of America.
| |
Collapse
|
12
|
Chiu YH, Liu YN, Chen HJ, Chang YC, Kao SM, Liu MY, Weng YY, Hsiao KJ, Liu TT. Prediction of functional consequences of the five newly discovered G6PD variations in Taiwan. Data Brief 2019; 25:104129. [PMID: 31294066 PMCID: PMC6595892 DOI: 10.1016/j.dib.2019.104129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency; OMIM #300908) is the most common inborn error disorders worldwide. While the G6PD is the key enzyme of removing oxidative stress in erythrocytes, the early diagnosis is utmost vital to prevent chronic and drug-, food- or infection-induced hemolytic anemia. The characterization of the mutations is also important for the subsequent genetic counseling, especially for female carrier with ambiguous enzyme activities and males with mild mutations. While multiplex SNaPshot assay and Sanger sequencing were performed on 500 G6PD deficient males, five newly discovered variations, namely c.187G > A (p.E63K), c.585G > C (p.Q195H), c.586A > T (p.I196F), c.743G > A (p.G248D), and c.1330G > A (p.V444I) were detected in the other six patients. These variants were previously named as the Pingtung, Tainan, Changhua, Chiayi, and Tainan-2 variants, respectively. The in silico analysis, as well as the prediction of the structure of the resultant mutant G6PD protein indicated that these five newly discovered variants might be disease causing mutations.
Collapse
Affiliation(s)
- Yen-Hui Chiu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.,Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Yu-Ning Liu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Hsiao-Jan Chen
- Neonatal Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
| | - Ying-Chen Chang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Min Kao
- Neonatal Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
| | - Mei-Ying Liu
- Neonatal Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
| | - Ying-Yen Weng
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Kwang-Jen Hsiao
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.,Preventive Medicine Foundation, Taipei, Taiwan
| | - Tze-Tze Liu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|