1
|
Chen J, Chen J, Fang Y, Shen Q, Zhao K, Liu C, Zhang H. Microbiology and immune mechanisms associated with male infertility. Front Immunol 2023; 14:1139450. [PMID: 36895560 PMCID: PMC9989213 DOI: 10.3389/fimmu.2023.1139450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Up to 50% of infertility is caused by the male side. Varicocele, orchitis, prostatitis, oligospermia, asthenospermia, and azoospermia are common causes of impaired male reproductive function and male infertility. In recent years, more and more studies have shown that microorganisms play an increasingly important role in the occurrence of these diseases. This review will discuss the microbiological changes associated with male infertility from the perspective of etiology, and how microorganisms affect the normal function of the male reproductive system through immune mechanisms. Linking male infertility with microbiome and immunomics can help us recognize the immune response under different disease states, providing more targeted immune target therapy for these diseases, and even the possibility of combined immunotherapy and microbial therapy for male infertility.
Collapse
Affiliation(s)
- Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Aibara N, Miyata Y, Araki K, Sagara Y, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H, Ohyama K. Detection of Novel Urine Markers Using Immune Complexome Analysis in Bladder Cancer Patients: A Preliminary Study. In Vivo 2021; 35:2073-2080. [PMID: 34182482 DOI: 10.21873/invivo.12476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Little is known on urine biomarkers that are associated with malignant behavior in patients with bladder cancer (BC). Our aim was to identify BC-related factors in urine samples using our original method "immune complexome analysis", based on detecting the immune complex (IC). PATIENTS AND METHODS Immune complexome analysis was performed using urine samples from 97 BC patients, including 67 with non-muscle invasive BC (NMIBC). RESULTS Eight IC-antigens were recognized as candidates for BC-related factors from 20,165 proteins. IC-serum albumin, -fibrinogen γ chain, -hemoglobin subunit α, -hemoglobin subunit β, -ceruloplasmin, and fibrinogen β chain were significantly associated with either pathological features and/or outcome. IC-ceruloplasmin was most widely associated with pathological features in all BC patients and lamina propria invasion and urinary tract recurrence in NMIBC. CONCLUSION Based on detection of IC-antigens it was demonstrated that six IC-antigens, especially IC-ceruloplasmin, are potential urine biomarkers in BC.
Collapse
Affiliation(s)
- Nozomi Aibara
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Abstract
Infertility is a main manifestation of endometriosis, though the exact pathogenesis of endometriosis-associated infertility remains unclear. Compromised ovarian functions may be one of the causes of endometriosis related infertility. The ovarian function can be classified into three basic elements, (1) production of ovarian hormones, (2) maintenance of follicular development until ovulation, and (3) reservoir of dormant oocytes (ovarian reserve). The effects of endometriosis on ovarian hormone production and follicular development are inconclusive. Ovarian endometrioma is common phonotype of endometriosis. Development of endometrioma per se may affect ovarian reserve. Surgery for endometriomas further diminish ovarian reserve, especially women with bilateral involvement. Early intervention with surgery and/or medical treatment may be beneficial, though firm evidence is lacking. When surgery is chosen in women at reproductive age, specific techniques that spare ovarian function should be considered.
Collapse
|
4
|
Aibara N, Ohyama K, Nakamura M, Nakamura H, Tamai M, Kishikawa N, Kawakami A, Tsukamoto K, Nakashima M, Kuroda N. Investigation of immune complexes formed by mitochondrial antigens containing a new lipoylated site in sera of primary biliary cholangitis patients. Clin Exp Immunol 2021; 204:335-343. [PMID: 33605437 DOI: 10.1111/cei.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is characterized by the presence of serum anti-mitochondrial autoantibodies (AMAs). To date, four antigens among the 2-oxo-acid dehydrogenase complex family, which commonly have lipoyl domains as an epitope, have been identified as AMA-corresponding antigens (AMA-antigens). It has recently been reported that AMAs react more strongly with certain chemically modified mimics than with the native lipoyl domains in AMA-antigens. Moreover, high concentrations of circulating immune complexes (ICs) in PBC patients have been reported. However, the existence of ICs formed by AMAs and their antigens has not been reported to date. We hypothesized that AMAs and their antigens formed ICs in PBC sera, and analyzed sera of PBC and four autoimmune diseases (Sjögren's syndrome, systemic lupus erythematosus, systemic scleroderma, and rheumatoid arthritis) using immune complexome analysis, in which ICs are separated from serum and are identified by nano-liquid chromatography-tandem mass spectrometry. To correctly assign MS/MS spectra to peptide sequences, we used a protein-search algorithm that including lipoylation and certain xenobiotic modifications. We found three AMA-antigens, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the E2 subunit of the 2-oxo-glutarate dehydrogenase complex (OGDC-E2) and dihydrolipoamide dehydrogenase binding protein (E3BP), by detecting peptides containing lipoylation and xenobiotic modifications from PBC sera. Although the lipoylated sites of these peptides were different from the well-known sites, abnormal lipoylation and xenobiotic modification may lead to production of AMAs and the formation ICs. Further investigation of the lipoylated sites, xenobiotic modifications, and IC formation will lead to deepen our understanding of PBC pathogenesis.
Collapse
Affiliation(s)
- N Aibara
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - H Nakamura
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Tamai
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - A Kawakami
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Yamane K, Nakamura H, Hamasaki M, Minei Y, Aibara N, Shimizu T, Kawakami A, Nakashima M, Kuroda N, Ohyama K. Immune complexome analysis reveals the presence of immune complexes and identifies disease-specific immune complex antigens in saliva samples from patients with Sjögren's syndrome. Clin Exp Immunol 2021; 204:212-220. [PMID: 33432580 DOI: 10.1111/cei.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease that mainly damages the salivary and lacrimal glands. Immune complex (IC) formation triggers local inflammation through IC deposition and decreased antigen function. Some ICs can leak from the lesion and into the saliva, but no salivary ICs have been reported to date. We used immune complexome analysis to comprehensively identify antigens incorporated into IC (IC-antigens) in saliva samples from patients with SS (n = 9) or with xerostomia (n = 7). Neutrophil defensin 1 (67%), small proline-rich protein 2D (67%), myeloperoxidase (44%), neutrophil elastase (44%), cathepsin G (33%), nuclear mitotic apparatus 1 (33%) and phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit gamma (33%) were identified as new IC-antigens specifically and frequently detected in the saliva of SS patients. Of these, neutrophil defensin 1, myeloperoxidase, neutrophil elastase and cathepsin G are neutrophil intracellular proteins, which suggests that repeated destruction of neutrophils due to abnormal autoimmunity may be involved in the pathogenesis of SS. We also analyzed serum samples from three SS patients. There was little overlap of IC-antigens between two of the samples (fewer than 30% of the IC-antigens in the saliva samples), suggesting that many ICs are formed locally and independently of the circulation. In addition, we found that four SS-specific salivary antigens show sequence homology with several proteins of oral microbiomes but no antigen has homology with Epstein-Barr virus proteins. The homology between some IC-antigens and oral microbiome proteins may indicate the impact of oral infection on local autoimmunity through molecular mimicry theory.
Collapse
Affiliation(s)
- K Yamane
- School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | - H Nakamura
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Hamasaki
- School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | - Y Minei
- School of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Aibara
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - T Shimizu
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - A Kawakami
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - M Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Abstract
Immune complexes (ICs) formed by foreign or self-antigens and antibodies in biological fluids affect various tissues and are thought to cause several diseases. Biological and physical properties of IC, abnormal IC amounts, IC deposition and their relationships with disease pathogenesis had been studied. However, the relationship between ICs and each disease is not well understood and little is known of what determined ICs deposition in particular organ and why different organs are affected in different diseases. Recent technological advance enables identification of ICs in particular its antigens in tissues and body fluids, which may provide a key to discover an important trigger for immunological abnormality occurrence. Further identification of their epitopes, that are the exact origin of antigenicity, is developing and may be useful for diagnosis, elucidation of pathogenesis and treatment against IC-induced diseases. Here, we first make an overview of clearance of ICs, IC-induced pathogenesis and biological properties of ICs. Then, we introduce various methods developed to recover ICs from biological fluids or to identify antigens incorporated into ICs. Furthermore, several methods that can be used in epitope mapping for IC antigens are also documented.
Collapse
Affiliation(s)
- Nozomi Aibara
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|