1
|
Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y, Liu Y. The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025; 11:11. [PMID: 39794340 PMCID: PMC11723975 DOI: 10.1038/s41522-025-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.
Collapse
Affiliation(s)
- Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
| |
Collapse
|
2
|
Gao Y, Wang H, Hu Y, Li J, Xu W, Zhao L, Su X, Han J, Li T, Fang X, Liu L. Whole-genome metagenomic analysis of the oral microbiota in patients with obstructive sleep apnea. Sleep Breath 2023; 27:1383-1398. [PMID: 36401059 DOI: 10.1007/s11325-022-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE The oral microbiota is closely associated with systemic health, but few studies have investigated the oral microbiota in patients with obstructive sleep apnea (OSA). This study aimed to identify the variation of oral microbiota among patients with severe OSA, and the change of oral microbiota after treatment with continuous positive airway pressure (CPAP). METHODS Participants were enrolled in the study from November 2020 to August 2021. Sleep parameters using full nocturnal polysomnography (PSG) were collected on healthy controls, patients with severe OSA, and patients with severe OSA after CPAP treatment for 3 months. Oral samples were also collected by rubbing disposable medical sterile swabs on the buccal mucosa. Routine blood tests and biochemical indicators were measured using the fully automated biochemical analyzer. Oral microbial composition of oral samples were determined using whole-genome metagenomic analysis in all participants. Correlations were analyzed between the oral microbiota and blood lipids. RESULTS Study enrollment included 14 participants, 7 healthy controls and 7 patients with severe OSA. At the species level, the relative abundances of Prevotella, Alloprevotella, Bacteroides, Veillonella_tobetsuensis, Candidatus saccharimonas, and Leptotrichia in the groups with severe OSA were significantly lower than those in the healthy controls (P both < 0.05). The abundances of Capnocytophaga, Veillonella, Bacillus_anthracis, Eikenella, and Kingella were significantly higher whereas the abundances of Gordonia and Streptococcus were significantly lower in the group with severe OSA compared to the severe OSA-CPAP group (P < 0.05 for both). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), 4 pathways changed in the group with severe OSA compared with healthy controls (P both < 0.05). Pathways related to Novobiocin biosynthesis, 2-Oxocarboxylic acid metabolism, and Histidine metabolism were enriched in the patients with severe OSA. Nine pathways showed significant differences with regard to the relative abundances of phenylalanine metabolism; alanine, aspartate, and glutamate metabolism; one carbon pool by folate; monobactam biosynthesis; 2-oxocarboxylic acid metabolism; arginine biosynthesis and vitamin B6 metabolism; novobiocin biosynthesis; and arginine and proline metabolism, which were significantly higher in the group with severe OSA compared to the severe OSA-CPAP group (P both < 0.05). The Spearman correlation analysis between blood lipid parameters and oral microbiota components showed that negative correlations were observed between total cholesterol and Streptomyces (r = - 0.893, P = 0.007), and high-density lipoprotein cholesterol (HDL-C) and Gordonia (r = - 0.821, P = 0.023); positive correlations were observed between HDL-C and Candidatus saccharimonas (r = 0.929, P = 0.003), and low-density lipoprotein cholesterol (LDL-C) and Capnocytophaga (r = 0.893, P = 0.007). CONCLUSION There was an apparent discrepancy of the oral microbiota and metabolic pathways between the group with severe OSA and controls, and CPAP significantly changed oral microbial abundance and metabolic pathways in patients with severe OSA. Correlation analysis showed that these oral bacteria were strongly correlated with the blood lipids level.
Collapse
Affiliation(s)
- Yinghui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, 102206, China
| | - Huanhuan Wang
- Nursing of Peking University, Beijing, 100191, China
| | - Yazhuo Hu
- Institute of Gerontology, Second Medical Center, PLA General Hospital, Beijing, 100853, China
| | - JianHua Li
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weihao Xu
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - LiBo Zhao
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaofeng Su
- Medical College, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Jiming Han
- Medical College, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Tianzhi Li
- The Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiangqun Fang
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
3
|
Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol 2023. [PMID: 37173818 DOI: 10.1002/jobm.202300141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
As a gateway to general health and a diverse microbial habitat, the oral cavity is colonized by numerous microorganisms such as bacteria, fungi, viruses, and archaea. Oral microbiota plays an essential role in preserving oral health. Besides, the oral cavity also significantly contributes to systemic health. Physiological aging influences all body systems, including the oral microbial inhabitants. The cited effect can cause diseases by forming dysbiotic communities. Since it has been demonstrated that microbial dysbiosis could disturb the symbiosis state between the host and the resident microorganism, shifting the condition toward a more pathogenic one, this study investigated how the oral microbial shifts in aging could associate with the development or progression of systemic diseases in older adults. The current study focused on the interactions between variations in the oral microbiome and prevalent diseases in older adults, including diabetes mellitus, Sjögren's syndrome, rheumatoid arthritis, pulmonary diseases, cardiovascular diseases, oral candidiasis, Parkinson's disease, Alzheimer's disease, and glaucoma. Underlying diseases can dynamically modify the oral ecology and the composition of its resident oral microbiome. Clinical, experimental, and epidemiological research suggests the associations of systemic disorders with bacteremia and inflammation after oral microbial changes in older adults.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mahootchi
- Department of Oral and Maxillofacial Diseases, School of Dentistry, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sajedeh Safari
- Department of Prosthodontics, Islamic Azad University, Tehran, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Herreros-Pomares A, Hervás D, Bagan-Debón L, Jantus-Lewintre E, Gimeno-Cardona C, Bagan J. On the Oral Microbiome of Oral Potentially Malignant and Malignant Disorders: Dysbiosis, Loss of Diversity, and Pathogens Enrichment. Int J Mol Sci 2023; 24:ijms24043466. [PMID: 36834903 PMCID: PMC9961214 DOI: 10.3390/ijms24043466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The role of dysbiosis in the development and progression of oral potentially malignant disorders (OPMDs) remains largely unknown. Here, we aim to characterize and compare the oral microbiome of homogeneous leucoplakia (HL), proliferative verrucous leukoplakia (PVL), oral squamous cell carcinoma (OSCC), and OSCC preceded by PVL (PVL-OSCC). Fifty oral biopsies from HL (n = 9), PVL (n = 12), OSCC (n = 10), PVL-OSCC (n = 8), and healthy (n = 11) donors were obtained. The sequence of the V3-V4 region of the 16S rRNA gene was used to analyze the composition and diversity of bacterial populations. In the cancer patients, the number of observed amplicon sequence variants (ASVs) was lower and Fusobacteriota constituted more than 30% of the microbiome. PVL and PVL-OSCC patients had a higher abundance of Campilobacterota and lower Proteobacteria than any other group analyzed. A penalized regression was performed to determine which species were able to distinguish groups. HL is enriched in Streptococcus parasanguinis, Streptococcus salivarius, Fusobacterium periodonticum, Prevotella histicola, Porphyromonas pasteri, and Megasphaera micronuciformis; PVL is enriched in Prevotella salivae, Campylobacter concisus, Dialister pneumosintes, and Schaalia odontolytica; OSCC is enriched in Capnocytophaga leadbetteri, Capnocytophaga sputigena, Capnocytophaga gingivalis, Campylobacter showae, Metamycoplasma salivarium, and Prevotella nanceiensis; and PVL-OSCC is enriched in Lachnospiraceae bacterium, Selenomonas sputigena, and Prevotella shahii. There is differential dysbiosis in patients suffering from OPMDs and cancer. To the best of our knowledge, this is the first study comparing the oral microbiome alterations in these groups; thus, additional studies are needed.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.H.-P.); (J.B.)
| | - David Hervás
- Department of Applied Statistics and Operational Research, and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Leticia Bagan-Debón
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - José Bagan
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Precancer and Oral Cancer Research Group, Valencia University, 46010 Valencia, Spain
- Correspondence: (A.H.-P.); (J.B.)
| |
Collapse
|
5
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|
6
|
Nrf2 in the Field of Dentistry with Special Attention to NLRP3. Antioxidants (Basel) 2022; 11:antiox11010149. [PMID: 35052653 PMCID: PMC8772975 DOI: 10.3390/antiox11010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health.
Collapse
|
7
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Herreros-Pomares A, Llorens C, Soriano B, Zhang F, Gallach S, Bagan L, Murillo J, Jantus-Lewintre E, Bagan J. Oral microbiome in Proliferative Verrucous Leukoplakia exhibits loss of diversity and enrichment of pathogens. Oral Oncol 2021; 120:105404. [PMID: 34225130 DOI: 10.1016/j.oraloncology.2021.105404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oral microbiome plays an important role in oral diseases. Among them, proliferative verrucous leucoplakia (PVL) is an uncommon form of progressive multifocal leukoplakia with a worryingly rate of malignant transformation. Here, we aimed to characterize the oral microbiome of PVL patients and compare it with those of healthy controls. MATERIAL AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their microbial communities. The sequence of the V3-V4 region of 16S rRNA gene was used as the taxonomic basis to estimate and analyze the composition and diversity of bacterial populations present in the samples. RESULTS Our results show that the oral microbial composition and diversity are significantly different among PVL patients and healthy donors. The average number of observed operational taxonomic units (OTUs) was higher for healthy donors than for PVL, proving a loss of diversity in PVL. Several OTUs were found to be more abundant in either group. Among those that were significantly enriched in PVL patients, potential protumorigenic pathogens like Oribacterium sp. oral taxon 108, Campylobacter jejuni, uncultured Eubacterium sp., Tannerella, and Porphyromonas were identified. CONCLUSION Oral microbiome dysbiosis was found in patients suffering from PVL. To the best of our knowledge, this is the first study investigating the oral microbiome alterations in PVL and, due to the limited number of participants, additional studies are needed. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of PVL.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Judith Murillo
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
9
|
The Oral Microbiome of Healthy Japanese People at the Age of 90. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. Pyrosequencing was performed using MiSeq. Operational taxonomic units (OTUs) were assigned on the basis of a 97% identity search in the EzTaxon-e database. Using the threshold of 100% detection on the species level, 13 species were detected: Streptococcus sinensis, Streptococcus pneumoniae, Streptococcus salivarius, KV831974_s, Streptococcus parasanguinis, Veillonella dispar, Granulicatella adiacens, Streptococcus_uc, Streptococcus peroris, KE952139_s, Veillonella parvula, Atopobium parvulum, and AFQU_vs. These species represent potential candidates for the core make-up of the human microbiome.
Collapse
|
10
|
Baragetti A, Catapano AL, Magni P. Multifactorial Activation of NLRP3 Inflammasome: Relevance for a Precision Approach to Atherosclerotic Cardiovascular Risk and Disease. Int J Mol Sci 2020; 21:E4459. [PMID: 32585928 PMCID: PMC7352274 DOI: 10.3390/ijms21124459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic low-grade inflammation, through the specific activation of the NACHT leucine-rich repeat- and PYD-containing (NLRP)3 inflammasome-interleukin (IL)-1β pathway, is an important contributor to the development of atherosclerotic cardiovascular disease (ASCVD), being triggered by intracellular cholesterol accumulation within cells. Within this pathological context, this complex pathway is activated by a number of factors, such as unhealthy nutrition, altered gut and oral microbiota, and elevated cholesterol itself. Moreover, evidence from autoinflammatory diseases, like psoriasis and others, which are also associated with higher cardiovascular disease (CVD) risk, suggests that variants of NLRP3 pathway-related genes (like NLRP3 itself, caspase recruitment domain-containing protein (CARD)8, caspase-1 and IL-1β) may carry gain-of-function mutations leading, in some individuals, to a constitutive pro-inflammatory pattern. Indeed, some reports have recently associated the presence of specific single nucleotide polymorphisms (SNPs) on such genes with greater ASCVD prevalence. Based on these observations, a potential effective strategy in this context may be the identification of carriers of these NLRP3-related SNPs, to generate a genomic score, potentially useful for a better CVD risk prediction, and, possibly, for personalized therapeutic approaches targeted to the NLRP3-IL-1β pathway.
Collapse
Affiliation(s)
- Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- SISA, Center for the Study of Atherosclerosis, Bassini Hospital, 20092 Cinisello Balsamo, Italy
| | - Alberico Luigi Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| |
Collapse
|