1
|
Lai G, Gu Q, Lai Z, Chen H, Tu X, Chen J, Huang J. Application of targeted high-throughput sequencing as a diagnostic tool for neonatal genetic metabolic diseases following tandem mass spectrometry screening. Front Public Health 2024; 12:1461141. [PMID: 39776477 PMCID: PMC11703805 DOI: 10.3389/fpubh.2024.1461141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background Tandem mass spectrometry (MS/MS) is a crucial technique for detecting inborn errors of metabolism (IEM) in newborns. However, the high false positive rate poses challenges in diagnosing specific types of diseases. Therefore, this study aimed to evaluate the role of targeted next-generation sequencing (NGS) in the accurate diagnosis of positive samples identified through MS/MS screening. Methods A cohort study of 260,915 newborns was conducted from January 2018 to June 2023 in Ganzhou City, southern China. Heel blood samples were collected within 72 h of birth and subjected to MS/MS analysis. Infants with positive MS/MS results underwent targeted NGS to confirm the diagnosis and identify genetic variants. Results Among 1,265 suspected cases with positive MS/MS results, 73 were confirmed by NGS, and 12 were identified as carriers of recessive diseases. The overall incidence rate was 1 in 3,574, effectively ruling out 94.2% (1,192/1,265) of the MS/MS false-positive. We found 76 variants in 18 genes associated with 15 types of IEM. Among these, 64.47% (49/76) were pathogenic, 10.53% (8/76) were likely pathogenic. Remarkably, 7.89% (6/76) were identified as novel variants. Variants in SLC22A5 (NM_003060.4) gene was most prevalent, accounting for 41% (77/188), with hotspot variants including c.51C > G, c.1400C > G, and c.338G > A. Conclusion Targeted NGS technology can serve as a crucial diagnostic tool for neonatal genetic metabolic diseases following MS/MS screening. Additionally, we identified IEM variant hotspots and some novel variants in our region, which are the underlying causes of disease in patients with IEM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jungao Huang
- Central Laboratory, Ganzhou Maternal and Child Health Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
3
|
Onuki T, Hiroshima S, Sawano K, Shibata N, Ogawa Y, Nagasaki K, Nyuzuki H. A Study of Maternal Patients Diagnosed with Inborn Errors of Metabolism Due to Positive Newborn Mass Screening in Their Newborns. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1341. [PMID: 37628339 PMCID: PMC10452974 DOI: 10.3390/children10081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND There are reports of mothers being diagnosed with inborn errors of metabolism (IEM) via positive newborn screening (NBS) of their newborns. Mothers with IEM are often considered to have mild cases of little pathological significance. Based in Niigata Prefecture, this study aimed to investigate mothers newly diagnosed with IEM via positive NBS in their newborns using tandem mass spectrometry, and to clarify the disease frequency and severity. METHODS This was a single-institution, population-based, retrospective study. The subjects were mothers whose newborns had false-positive NBS, among 80,410 newborns who underwent NBS between April 2016 and May 2021. RESULT there were 3 new mothers were diagnosed with IEM (2 with primary systemic carnitine deficiency (PCD) and 1 with 3-methylcrotonyl-CoA carboxylase deficiency) out of 5 who underwent examination among 18 false positives. The opportunity for diagnosis was low C0 and high C5-OH acylcarnitine levels in their newborn. Two novel SLC22A5 variants (c.1063T > C/c.1266A > G) were identified in patients with PCD. None of the patients had any complications at the time of diagnosis, but two patients showed improvement in fatigue and headache after taking oral carnitine. CONCLUSION New mothers with IEM cannot be considered as mild cases and need to be treated when necessary. The two novel SLC22A5 variants further expand the variant spectrum of PCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiromi Nyuzuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medicine and Dental Sciences, Niigata 951-8510, Japan; (T.O.); (S.H.); (K.S.); (N.S.); (Y.O.); (K.N.)
| |
Collapse
|
4
|
Lefèvre CR, Labarthe F, Dufour D, Moreau C, Faoucher M, Rollier P, Arnoux JB, Tardieu M, Damaj L, Bendavid C, Dessein AF, Acquaviva-Bourdain C, Cheillan D. Newborn Screening of Primary Carnitine Deficiency: An Overview of Worldwide Practices and Pitfalls to Define an Algorithm before Expansion of Newborn Screening in France. Int J Neonatal Screen 2023; 9:6. [PMID: 36810318 PMCID: PMC9944086 DOI: 10.3390/ijns9010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Primary Carnitine Deficiency (PCD) is a fatty acid oxidation disorder that will be included in the expansion of the French newborn screening (NBS) program at the beginning of 2023. This disease is of high complexity to screen, due to its pathophysiology and wide clinical spectrum. To date, few countries screen newborns for PCD and struggle with high false positive rates. Some have even removed PCD from their screening programs. To understand the risks and pitfalls of implementing PCD to the newborn screening program, we reviewed and analyzed the literature to identify hurdles and benefits from the experiences of countries already screening this inborn error of metabolism. In this study, we therefore, present the main pitfalls encountered and a worldwide overview of current practices in PCD newborn screening. In addition, we address the optimized screening algorithm that has been determined in France for the implementation of this new condition.
Collapse
Affiliation(s)
| | - François Labarthe
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Diane Dufour
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | | | | | - Paul Rollier
- Rennes University Hospital Center, 35033 Rennes, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Marine Tardieu
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Léna Damaj
- Rennes University Hospital Center, 35033 Rennes, France
| | | | - Anne-Frédérique Dessein
- Metabolism and Rare Disease Unit, Department of Biochemistry and Molecular Biology, Center of Biology and Pathology, Lille University Hospital Center, 59000 Lille, France
| | - Cécile Acquaviva-Bourdain
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| | - David Cheillan
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
5
|
shen L, Ding J. Serological Characteristics, Etiological Analysis, and Treatment Prognosis of Children with Congenital Hypothyroidism. Emerg Med Int 2022; 2022:8005848. [PMID: 36204333 PMCID: PMC9532153 DOI: 10.1155/2022/8005848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Objective The aim of the study is to analyze the serological features, etiology, and prognosis of congenital hypothyroidism (CH) treated with L-thyroxine sodium (L-T4). Methods A total of 126 CH children in our hospital from June 2015 to January 2020 were selected as the research objects, and L-T4 treatment was given immediately after diagnosis. After diagnosis and 24 months of treatment, laboratory serum thyroid function-related indicators were examined, and thyroid changes were determined by ultrasound. We compared serum thyroxine levels in children with different thyroid changes, compared serum thyroid hormone levels, serum ghrelin levels, and body mass index (BMI) changes in children with CH before treatment and after 24 months of treatment, and analyzed the prognosis of treatment in children. In terms of thyroid changes in 126 CH children, 32 cases (25.40%) had a normal thyroid gland, 16 cases (12.70%) had a hypoplastic thyroid gland, 40 cases (31.75%) had an ectopic thyroid gland, 28 cases (22.22%) had an absent thyroid gland, and 10 cases (7.93%) had an enlarged thyroid gland, with an ectopic thyroid gland being the most common. In terms of serological expression of CH children, the TSH level in children with thyroid dysplasia was significantly higher than that in children with basic normal and T3 and T4 levels were significantly lower than those in children with basic normal (P < 0.05). At the same time, the TSH level in children with thyroid absence, ectopic, and enlargement was increased, while thyroxine (T4) and tri-iodothyronine (T3) levels were decreased compared with those in children with thyroid dysplasia. The difference was statistically significant (P < 0.05). Univariate analysis showed that there were statistically significant differences in birth weight, week of gestation at delivery, maternal age at childbirth, household registration, and a family history of thyroid disease compared between the two groups (P < 0.05); multivariate logistic regression analysis showed that birth weight <2,500 g, maternal age >35 years, rural residence, and a family history of thyroid disease were risk factors for neonatal CH (P < 0.05). Serum thyroid-stimulating hormone (TSH) levels, serum ghrelin levels, and the body mass index of children with CH decreased significantly, and T4 levels increased significantly after 24 months of treatment (P < 0.05). Conclusion Screening for common causes of CH is conducive to timely detection of children with CH, and L-T4 treatment can effectively improve thyroid function in children.
Collapse
Affiliation(s)
- Lin shen
- Department of Paediatrics, Zhuji Maternal and Child Health Care Hospital, Zhuji, Zhejiang Province 311800, China
| | - Jingchao Ding
- Department of Paediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
6
|
Chen M, Yin Y, Liu H, Peng Y, Ye L, Luo Q, Miao J. Screening for newborn fatty acid oxidation disorders in Chongqing and the follow-up of confirmed children. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:290-297. [PMID: 36207828 PMCID: PMC9511477 DOI: 10.3724/zdxbyxb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the incidence, clinical characteristics, gene mutations and prognosis of fatty acid oxidation disorders (FAOD) in newborns in Chongqing. METHODS Blood samples were collected from 35 374 newborns for screening of FAOD in the Neonatal Screening Center of Women and Children's Hospital of Chongqing Medical University from July 2020 to February 2022. The acylcarnitine spectrum was detected by tandem mass spectrometry, the positive children in primary screening were recalled within 2 weeks, and the diagnosis of FAOD was confirmed by urine organic acid measurement, blood biochemistry testing and genetic analysis. The confirmed children were given early intervention, treatment and followed-up. RESULTS Among 35 374 newborns, there were 267 positive children in primary screening, with a positive rate of 0.75%. Five children with FAOD were diagnosed by gene detection, with an incidence rate of 1/7075. Among them, there were 3 cases of primary carnitine deficiency (PCD, 1/11 791), 1 case of short-chain acyl-CoA dehydrogenase deficiency (SCADD, 1/35 374) and 1 case of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, 1/35 374). The c.1400C>G and c.338G>A were the common mutations of SLC22A5 gene in 3 children with PCD, while c.621G>T was a novel mutation. There were no clinical manifestations during the follow-up period in 2 children with supplementation of L-carnitine. Another child with PCD did not follow the doctor's advice of L-carnitine treatment, and had acute attack at the age of 6 months. The child recovered after treatment, and developed normally during the follow-up. The detected ACADS gene mutations were c.417G>C and c.1054G>A in child with SCADD, who showed normal intelligence and physical development without any clinical symptoms. The mutations of ACADVL gene were c.1349G>A and c.1843C>T in child with VLCADD, who showed acute attack in the neonatal period and recovered after treatment; the child was fed with milk powder rich in medium-chain fatty acids and had normal development during the follow-up. CONCLUSIONS The incidence of FAOD in Chongqing area is relatively high. PCD is the most common type, and the clinical phenotype of VLCADD is serious. After early diagnosis through neonatal screening, standardized treatment and management is followed, most of FAOD children can have good prognosis.
Collapse
|
7
|
Crefcoeur LL, Visser G, Ferdinandusse S, Wijburg FA, Langeveld M, Sjouke B. Clinical characteristics of primary carnitine deficiency: A structured review using a case-by-case approach. J Inherit Metab Dis 2022; 45:386-405. [PMID: 34997761 PMCID: PMC9305179 DOI: 10.1002/jimd.12475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
A broad spectrum of signs and symptoms has been attributed to primary carnitine deficiency (PCD) since its first description in 1973. Advances in diagnostic procedures have improved diagnostic accuracy and the introduction of PCD in newborn screening (NBS) programs has led to the identification of an increasing number of PCD patients, including mothers of screened newborns, who may show a different phenotype compared to clinically diagnosed patients. To elucidate the spectrum of signs and symptoms in PCD patients, we performed a structured literature review. Using a case-by-case approach, clinical characteristics, diagnostic data, and mode of patient identification were recorded. Signs and symptoms were categorized by organ involvement. In total, 166 articles were included, reporting data on 757 individual patients. In almost 20% (N = 136) of the cases, the diagnosis was based solely on low carnitine concentration which we considered an uncertain diagnosis of PCD. The remaining 621 cases had a diagnosis based on genetic and/or functional (ie, carnitine transporter activity) test results. In these 621 cases, cardiac symptoms (predominantly cardiomyopathy) were the most prevalent (23.8%). Neurological (7.1%), hepatic (8.4%), and metabolic (9.2%) symptoms occurred mainly in early childhood. Adult onset of symptoms occurred in 16 of 194 adult patients, of whom 6 (3.1%) patients suffered a severe event without any preceding symptom (five cardiac events and one coma). In conclusion, symptoms in PCD predominantly develop in early childhood. Most newborns and mothers of newborns detected through NBS remain asymptomatic. However, though rarely, severe complications do occur in both groups.
Collapse
Affiliation(s)
- Loek L. Crefcoeur
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location Academic Medical CenterUniversity of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location Academic Medical CenterUniversity of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC location Academic Medical CenterUniversity of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Frits A. Wijburg
- Emma's Children's Hospital, Amsterdam UMC location Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC location Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Barbara Sjouke
- Department of Endocrinology and Metabolism, Amsterdam UMC location Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Zhou M, Deng L, Huang Y, Xiao Y, Wen J, Liu N, Zeng Y, Zhang H. Application of the Artificial Intelligence Algorithm Model for Screening of Inborn Errors of Metabolism. Front Pediatr 2022; 10:855943. [PMID: 35664874 PMCID: PMC9160361 DOI: 10.3389/fped.2022.855943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are strongly related to abnormal growth and development in newborns and can even result in death. In total, 94,648 newborns were enrolled for expanded newborn screening using tandem mass spectrometry (MS/MS) from 2016 to 2020 at the Neonatal Disease Screening Center of the Maternal and Child Health Hospital in Shaoyang City, China. A total of 23 confirmed cases were detected in our study with an incidence rate of 1:4,115. A total of 10 types of IEM were identified, and the most common IEMs were phenylalanine hydroxylase deficiency (PAHD; 1:15,775) and primary carnitine deficiency (PCD; 1:18,930). Mutations in phenylalanine hydroxylase (PAH) and SLC22A5 were the leading causes of IEMs. To evaluate the application effect of artificial intelligence (AI) in newborn screening, we used AI to retrospectively analyze the screening results and found that the false-positive rate could be decreased by more than 24.9% after using AI. Meanwhile, a missed case with neonatal intrahepatic cholestasis citrin deficiency (NICCD) was found, the infant had a normal citrulline level (31 μmol/L; cutoff value of 6-32 μmol/L), indicating that citrulline may not be the best biomarker of intrahepatic cholestasis citrin deficiency. Our results indicated that the use of AI in newborn screening could improve efficiency significantly. Hence, we propose a novel strategy that combines expanded neonatal IEM screening with AI to reduce the occurrence of false positives and false negatives.
Collapse
Affiliation(s)
- Muping Zhou
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Liyuan Deng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yan Huang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Ying Xiao
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Jun Wen
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Na Liu
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yingchao Zeng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Hua Zhang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| |
Collapse
|
9
|
Lin Y, Zhang W, Huang C, Lin C, Lin W, Peng W, Fu Q, Chen D. Increased detection of primary carnitine deficiency through second-tier newborn genetic screening. Orphanet J Rare Dis 2021; 16:149. [PMID: 33757571 PMCID: PMC7988980 DOI: 10.1186/s13023-021-01785-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Newborn screening for primary carnitine deficiency (NBS) is commonly implemented worldwide; however, it has poor sensitivity. This study aimed to evaluate the feasibility of improving screening by including a second-tier genetic assay. RESULTS An Agena iPLEX assay was developed to identify 17 common SLC22A5 mutations in Chinese populations and was applied in NBS as a second-tier screening. From January 2017 to December 2018, 204,777 newborns were screened for PCD using tandem mass spectrometry. A total of 316 (0.15%) residual NBS-positive specimens with low free carnitine (C0) levels were subjected to this second-tier screening. The screening identified 20 screen-positive newborns who harboured biallelic mutations in theSLC22A5 gene, 99 carriers with one mutation, and 197 screen-negative newborns with no mutations. Among the 99 carriers, four newborns were found to have a second disease-causing SLC22A5mutation by further genetic analysis. Among the 197 screen-negatives were four newborns with persistently low C0 levels, and further genetic analysis revealed that one newborn had two novel SLC22A5 pathogenic variants. In total, 25 newborns were diagnosed with PCD, for a positive predictive value of 7.91% (25/316). Based on these data, we estimate the incidence of PCD in Quanzhou is estimated to be 1:8191.Thirteen distinct SLC22A5 variants were identified, and the most common was c.760C > T, with an allelic frequency of 32% (16/50), followed by c.1400C > G (7/50, 14%), and c.51C > G (7/50, 14%). CONCLUSION Data from this study revealed that 24% (6/25) of PCD cases would have been missed by conventional NBS. This high-throughput iPLEX assay is a powerful tool for PCD genotyping. The addition of this second-tier genetic screening to the current NBS program could identify missed PCD cases, thereby increasing PCD detection. However, further studies are needed to optimise the workflow of the new screening algorithm and to evaluate the cost-effectiveness of this screening approach.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weifeng Zhang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Chenggang Huang
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weilin Peng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|