1
|
Wang T, Chen S, Zhou D, Hong Z. Exploring receptors for pro-resolving and non-pro-resolving mediators as therapeutic targets for sarcopenia. Metabolism 2025; 165:156148. [PMID: 39892864 DOI: 10.1016/j.metabol.2025.156148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Sarcopenia is defined by a reduction in both muscle strength and mass. Sarcopenia may be an inevitable component of the aging process, but it may also be accelerated by comorbidities and metabolic derangements. The underlying mechanisms contributing to these pathological changes remain poorly understood. We propose that chronic inflammation-mediated networks and metabolic defects that exacerbate muscle dysfunction are critical factors in sarcopenia and related diseases. Consequently, utilizing specialized pro-resolving mediators (SPMs) that function through specific G-protein coupled receptors (GPCRs) may offer effective therapeutic options for these disorders. However, challenges such as a limited understanding of SPM/receptor signaling pathways, rapid inactivation of SPMs, and the complexities of SPM synthesis impede their practical application. In this context, stable small-molecule SPM mimetics and receptor agonists present promising alternatives. Moreover, the aged adipose-skeletal axis may contribute to this process. Activating non-SPM GPCRs on adipocytes, immune cells, and muscle cells under conditions of systemic, chronic, low-grade inflammation (SCLGI) could help alleviate inflammation and metabolic dysfunction. Recent preclinical studies indicate that both SPM GPCRs and non-SPM GPCRs can mitigate symptoms of aging-related diseases such as obesity and diabetes, which are driven by chronic inflammation and metabolic disturbances. These findings suggest that targeting these receptors could provide a novel strategy for addressing various chronic inflammatory conditions, including sarcopenia.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Sihan Chen
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zadgaonkar U. The Interplay Between Adipokines and Body Composition in Obesity and Metabolic Diseases. Cureus 2025; 17:e78050. [PMID: 40013194 PMCID: PMC11863173 DOI: 10.7759/cureus.78050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
The worldwide health system faces challenges from obesity and related metabolic disorders because they exhibit both rising rates of occurrence and intricate pathophysiological mechanisms. This work examines how adipokines interact with body composition during obesity to control important metabolic functions. Bioactive molecules produced by adipose tissue function as adipokines which regulate essential biological pathways that control inflammation response and insulin sensitivity alongside energy balance management and immune system operation. The disruption of adipokine secretion and function leads directly to metabolic disorders which include insulin resistance and persistent inflammation characteristic of obesity-related conditions. This article investigates the therapeutic possibilities of adipokine pathway manipulation through new pharmacological approaches and lifestyle changes alongside personalized medicine developments. Researchers analyze adipokines as important biomarkers for patient disease classification and their application in creating individualized treatment plans. The review highlights existing research deficiencies and obstacles that stand in the way of applying adipokine discoveries to clinical settings. This article integrates existing research to show how adipokine regulation helps prevent obesity-related metabolic issues and suggests directions for future studies to enhance treatment results.
Collapse
Affiliation(s)
- Umesh Zadgaonkar
- Department of Nutrition and Dietetics, Global University, Itanagar, IND
| |
Collapse
|
3
|
Ghanem L, Essayli D, Kotaich J, Zein MA, Sahebkar A, Eid AH. Phenotypic switch of vascular smooth muscle cells in COVID-19: Role of cholesterol, calcium, and phosphate. J Cell Physiol 2024; 239:e31424. [PMID: 39188012 PMCID: PMC11649971 DOI: 10.1002/jcp.31424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Although the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as severe respiratory distress, its impact on the cardiovascular system is also notable. Studies reveal that COVID-19 patients often suffer from certain vascular diseases, partly attributed to increased proliferation or altered phenotype of vascular smooth muscle cells (VSMCs). Although the association between COVID-19 and VSMCs is recognized, the precise mechanism underlying SARS-CoV-2's influence on VSMC phenotype remains largely under-reviewed. In this context, while there is a consistent body of literature dissecting the effect of COVID-19 on the cardiovascular system, few reports delve into the potential role of VSMC switching in the pathophysiology associated with COVID-19 and the molecular mechanisms involved therein. This review dissects and critiques the link between COVID-19 and VSMCs, with particular attention to pathways involving cholesterol, calcium, and phosphate. These pathways underpin the interaction between the virus and VSMCs. Such interaction promotes VSMC proliferation, and eventually potentiates vascular calcification as well as worsens prognosis in patients with COVID-19.
Collapse
MESH Headings
- Animals
- Humans
- Calcium/metabolism
- Cell Proliferation
- Cholesterol/metabolism
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/virology
- Phenotype
- Phosphates/metabolism
- SARS-CoV-2/pathogenicity
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/virology
Collapse
Affiliation(s)
- Laura Ghanem
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Dina Essayli
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Jana Kotaich
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
- MEDICA Research InvestigationBeirutLebanon
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
4
|
Mylonakis A, Frountzas M, Lidoriki I, Kozadinos A, Kalfoutzou A, Karanikki E, Tsikrikou I, Kyriakidou M, Theodorou D, Toutouzas KG, Schizas D. The Role of Chemerin in Upper Gastrointestinal Cancer. Metabolites 2024; 14:599. [PMID: 39590835 PMCID: PMC11596733 DOI: 10.3390/metabo14110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Chemerin, which is a multifunctional cytokine and adipokine, has been implicated in inflammatory and metabolic processes and might play a role in upper gastrointestinal (GI) malignancies, particularly gastric and esophageal cancer. The aim of this review is to explore the role of chemerin in the pathophysiology of upper GI cancers, as well as its potential as a biomarker for early detection and as a therapeutic target. Methods: A comprehensive review of recent studies about chemerin's biochemical properties and interaction with its receptors, as well as its effects on inflammatory responses, immune regulation, and metabolic processes, was conducted. The clinical implications of chemerin for gastric and esophageal cancer were analyzed, whereas the potential therapeutic strategies targeting chemerin were discussed. Results: Elevated chemerin levels are associated with poor prognosis in gastric cancer and promote invasiveness and metastasis in esophageal cancer. Chemerin receptor antagonists show promising results in inhibiting cancer cell migration, invasion, and progression. Conclusions: Chemerin could represent a valuable prognostic biomarker and therapeutic target for upper GI cancers. Future observational studies should validate its clinical applications and investigate the efficacy of chemerin inhibitors as potential therapeutic targets.
Collapse
Affiliation(s)
- Adam Mylonakis
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Irene Lidoriki
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
- Department of Environmental, Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02139, USA
- Department of Occupational Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Alexandros Kozadinos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Areti Kalfoutzou
- Department of Oncology, 251 Air Force General Hospital, 11525 Athens, Greece
| | - Eva Karanikki
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Iliana Tsikrikou
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Maria Kyriakidou
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Dimitrios Theodorou
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Konstantinos G. Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| |
Collapse
|
5
|
Lai M, Lin K, Chen X, Cheng Y. Diverse Cytokines Secreted by Adipocyte in Linking Cardio-Metabolic Disorder and SLE. FRONT BIOSCI-LANDMRK 2024; 29:373. [PMID: 39614444 DOI: 10.31083/j.fbl2911373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a multi-factorial autoimmune-mediated disease with hyper-stimulation of immune cells especially the T lymphocytes. By this method, it might facilitate the systematic damages in multiple tissues and organs. Otherwise, SLE is also correlated with diverse cardio-metabolic comorbidities, including dyslipidemia, insulin resistance, and hypertension. It is worth-noting that the risk of cardio-metabolic disorders is significantly higher compared with the healthy patients which was reported as approximately one-third of SLE patients were proved as obesity. Notably, current focus is shifting to implementing cardio-metabolic protective strategies as well as elucidating underlying mechanisms of lupus-mediated obese status. On the other hand, adipocyte, as the most abundant endocrine cell in fat tissue, are dysfunctional in obese individuals with aberrant secretion of adipokines. It is proposing that the adipokine might link the pathology of cardio-metabolic disorders and SLE, whereas the related mechanism is complicated. In the current review, the functions of adipokine and the potential mechanisms by which the adipokine link cardio-metabolic disorders and SLE was well listed. Furthermore, the recommendations, which identify the adipokine as the potential therapeutic targets for the treatment of cardio-metabolic disorders and SLE, were also summarized.
Collapse
Affiliation(s)
- Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Kai Lin
- Department of Interventional Clinic, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Xiaofang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| |
Collapse
|
6
|
Pavel V, Amend P, Schmidtner N, Utrata A, Birner C, Schmid S, Krautbauer S, Müller M, Mester P, Buechler C. Chemerin Levels in COVID-19 Are More Affected by Underlying Diseases than by the Virus Infection Itself. Biomedicines 2024; 12:2099. [PMID: 39335612 PMCID: PMC11430512 DOI: 10.3390/biomedicines12092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chemerin is an adipokine involved in inflammatory and metabolic diseases, and its circulating levels have been associated with inflammatory parameters in various patient cohorts. Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, which causes COVID-19, triggers inflammatory pathways. However, the association between serum chemerin levels and COVID-19 disease severity and outcomes has not been definitively established. METHODS In this study, serum chemerin levels were analyzed in 64 patients with moderate COVID-19 and 60 patients with severe disease. RESULTS The results showed that serum chemerin levels were comparable between these two groups and slightly higher than in healthy controls. Notably, COVID-19 patients with hypertension exhibited elevated serum chemerin levels, while those with liver cirrhosis had lower levels. When patients with these comorbidities were excluded from the analyses, serum chemerin levels in COVID-19 patients were similar to those in healthy controls. Positive correlations were observed between serum chemerin levels and markers such as alkaline phosphatase, C-reactive protein, eosinophils, and lymphocytes in the entire cohort, as well as in the subgroup excluding patients with hypertension and cirrhosis. Additionally, urinary chemerin levels were comparable between COVID-19 patients and controls, and neither hypertension nor dialysis significantly affected urinary chemerin levels. Both survivors and non-survivors had similar serum and urinary chemerin levels. CONCLUSIONS In conclusion, this study suggests that comorbidities such as arterial hypertension and liver cirrhosis do have a more significant impact on serum chemerin levels than SARS-CoV-2 infection itself.
Collapse
Affiliation(s)
- Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Niklas Schmidtner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Utrata
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Charlotte Birner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Hao WY, Wang JX, Xu XY, Chen JL, Chen Q, Li YH, Zhu GQ, Chen AD. Chemerin in caudal division of nucleus tractus solitarius increases sympathetic activity and blood pressure. Eur J Neurosci 2024; 60:4830-4842. [PMID: 39044301 DOI: 10.1111/ejn.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.
Collapse
Affiliation(s)
- Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Zhao L, Zhou J, Abbasi F, Fathzadeh M, Knowles JW, Leung LLK, Morser J. Chemerin in Participants with or without Insulin Resistance and Diabetes. Biomedicines 2024; 12:924. [PMID: 38672278 PMCID: PMC11048116 DOI: 10.3390/biomedicines12040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chemerin is a chemokine/adipokine, regulating inflammation, adipogenesis and energy metabolism whose activity depends on successive proteolytic cleavages at its C-terminus. Chemerin levels and processing are correlated with insulin resistance. We hypothesized that chemerin processing would be higher in individuals with type 2 diabetes (T2D) and in those who are insulin resistant (IR). This hypothesis was tested by characterizing different chemerin forms by specific ELISA in the plasma of 18 participants with T2D and 116 without T2D who also had their insulin resistance measured by steady-state plasma glucose (SSPG) concentration during an insulin suppression test. This approach enabled us to analyze the association of chemerin levels with a direct measure of insulin resistance (SSPG concentration). Participants were divided into groups based on their degree of insulin resistance using SSPG concentration tertiles: insulin sensitive (IS, SSPG ≤ 91 mg/dL), intermediate IR (IM, SSPG 92-199 mg/dL), and IR (SSPG ≥ 200 mg/dL). Levels of different chemerin forms were highest in patients with T2D, second highest in individuals without T2D who were IR, and lowest in persons without T2D who were IM or IS. In the whole group, chemerin levels positively correlated with both degree of insulin resistance (SSPG concentration) and adiposity (BMI). Participants with T2D and those without T2D who were IR had the most proteolytic processing of chemerin, resulting in higher levels of both cleaved and degraded chemerin. This suggests that increased inflammation in individuals who have T2D or are IR causes more chemerin processing.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jonathan Zhou
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27705, USA;
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Mohsen Fathzadeh
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Lawrence L. K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Gokdemir GŞ, Gokdemir MT, Araç S, Yokuş B. Prognostic significance of the chemerin level in coronavirus disease 2019 patients. Medicine (Baltimore) 2024; 103:e37743. [PMID: 38579052 PMCID: PMC10994447 DOI: 10.1097/md.0000000000037743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Increased serum chemerin levels have been reported in several inflammatory diseases. Few studies have investigated the relationship between chemerin and clinical features of COVID-19. Thus, chemerin may modulate the development and progression of COVID-19. We compared the serum chemerin concentration between patients with and without SARS-CoV-2 infection and its association with the severity and prognosis of COVID-19 pneumonia. This is a prospective, single-center, cross-sectional study. We enrolled COVID-19 patients who presented to our tertiary hospital and healthy controls. The COVID-19 patients were conducted and the dates of symptom onset were recorded. After admission to the hospital and stabilization, blood samples were obtained for routine hemogram, biochemistry, and chemerin. The chemerin level was 37.93 ± 17.3 ng/mL in patients followed in the ICU, 29.41 ± 12.79 ng/mL in inpatients, 30.48 ± 10.86 ng/mL in outpatients, and 25.12 ± 9.82 ng/mL in healthy controls. The difference between patients treated in the ICU and healthy controls was significant (P < .001). The high-sensitivity C-reactive protein (hs-CRP), ferritin, procalcitonin (PCT), and D-dimer levels were significantly higher in the intensive care unit (ICU) group (P < .001). Moreover, the chemerin level of patients who died was significantly higher than that of those who survived (P < .001). The chemerin level was increased in COVID-19 patients and also increased with increasing disease severity. The chemerin level was higher in the COVID-19 patients than healthy controls and was significantly higher in patients who died compared to those who did not.
Collapse
Affiliation(s)
- Gül Şahika Gokdemir
- Faculty of Medicine, Physiology Department, Mardin Artuklu University, Mardin, Turkey
| | - Mehmet Tahir Gokdemir
- Faculty of Medicine, Emergency Department, Mardin Artuklu University, Mardin, Turkey
| | - Songül Araç
- Emergency Department, University of Health Science, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Beran Yokuş
- Faculty of Veterinary, Biochemistry Department, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
10
|
Corona-Meraz FI, Vázquez-Del Mercado M, Sandoval-García F, Robles-De Anda JA, Tovar-Cuevas AJ, Rosales-Gómez RC, Guzmán-Ornelas MO, González-Inostroz D, Peña-Nava M, Martín-Márquez BT. Biomarkers in Systemic Lupus Erythematosus along with Metabolic Syndrome. J Clin Med 2024; 13:1988. [PMID: 38610754 PMCID: PMC11012563 DOI: 10.3390/jcm13071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of physiological abnormalities characterized by obesity, insulin resistance (IR), and hypertriglyceridemia, which carry the risk of developing cardiovascular disease (CVD) and type 2 diabetes (T2D). Immune and metabolic alterations have been observed in MetS and are associated with autoimmune development. Systemic lupus erythematosus (SLE) is an autoimmune disease caused by a complex interaction of environmental, hormonal, and genetic factors and hyperactivation of immune cells. Patients with SLE have a high prevalence of MetS, in which elevated CVD is observed. Among the efforts of multidisciplinary healthcare teams to make an early diagnosis, a wide variety of factors have been considered and associated with the generation of biomarkers. This review aimed to elucidate some primary biomarkers and propose a set of assessments to improve the projection of the diagnosis and evolution of patients. These biomarkers include metabolic profiles, cytokines, cardiovascular tests, and microRNAs (miRs), which have been observed to be dysregulated in these patients and associated with outcomes.
Collapse
Affiliation(s)
- Fernanda Isadora Corona-Meraz
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Mónica Vázquez-Del Mercado
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Rheumatology Service, Internal Medicine Division, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara 44340, Jalisco, Mexico
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Flavio Sandoval-García
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesus-Aureliano Robles-De Anda
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Alvaro-Jovanny Tovar-Cuevas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Roberto-Carlos Rosales-Gómez
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Milton-Omar Guzmán-Ornelas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Daniel González-Inostroz
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Miguel Peña-Nava
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Beatriz-Teresita Martín-Márquez
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
11
|
Russjan E. The Role of Peptides in Asthma-Obesity Phenotype. Int J Mol Sci 2024; 25:3213. [PMID: 38542187 PMCID: PMC10970696 DOI: 10.3390/ijms25063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 01/04/2025] Open
Abstract
The co-occurrence of asthma and obesity is becoming an increasingly common health problem. It became clear that both diseases are closely related, since overweight/obesity are associated with an increased risk of asthma development, and more than half of the subjects with severe or difficult-to-treat asthma are obese. Currently, there are no specific guidelines for the treatment of this group of patients. The mechanisms involved in the asthma-obesity phenotype include low-grade chronic inflammation and changes in pulmonary physiology. However, genetic predispositions, gender differences, comorbid conditions, and gut microbiota also seem to be important. Regulatory peptides affect many processes related to the functioning of the respiratory tract and adipose tissue. Adipokines such as leptin, adiponectin, resistin, and the less studied omentin, chemerin, and visfatin, as well as the gastrointestinal hormones ghrelin, cholecystokinin, glucagon-like peptide-1, and neuropeptides, including substance P or neuropeptide Y, can play a significant role in asthma with obesity. The aim of this article is to provide a concise review of the contribution of particular peptides in inflammatory reactions, obesity, asthma, and a combination of both diseases, as well as emphasize their potential role in the effective treatment of the asthma-obesity phenotype in the future.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Tian J, Mu Y, Ma L. Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury. Toxicol Res 2024; 40:73-81. [PMID: 38223664 PMCID: PMC10786799 DOI: 10.1007/s43188-023-00205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 01/16/2024] Open
Abstract
This study investigated whether chemerin/chemokine-like receptor 1 (CMKLR1) pathway participate in cisplatin-induced spiral ganglion neuron (SGN) damage. Middle cochlear turn was collected from C57BL/6 mice and the SGNs were cultured. Cisplatin, 2-(anaphthoyl) ethyltrimethylammonium iodide (α-NETA), or recombinant mouse chemerin was added into the medium for the treatment. Relative mRNA and protein expression was determined by RT-PCR, ELISA and Western blot, respectively. In cultured mouse cochlear SGNs, the treatment of cisplatin enhanced the secretion of chemerin and CMKLR1. Recombinant chemerin promoted but α-NETA inhibited chemerin/CMKLR1 pathway in cisplatin stimulated SGNs. Cisplatin-induced apoptosis and inflammation response in SGNs were enhanced by recombinant chemerin while inhibited by α-NETA. Recombinant chemerin promoted but α-NETA inhibited NF-κB signal in cisplatin stimulated SGNs. In conclusion, chemerin/CMKLR1 pathway regulated apoptosis and inflammation response in cisplatin-induced SGN injury through NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00205-0.
Collapse
Affiliation(s)
- Jie Tian
- Department of Otology, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zhangdian District, Zibo, 255036 Shandong China
| | - Ying Mu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| | - Lili Ma
- Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| |
Collapse
|
13
|
Bengi VU, Özcan E, Saygun NI, Guler OS, Serdar MA. Effect of non-surgical periodontal treatment on visfatin and chemerin concentration in the gingival crevicular fluid. Odontology 2024; 112:200-207. [PMID: 36976366 DOI: 10.1007/s10266-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Visfatin, as a novel adipokine, is considered to play a role in periodontal inflammation. Chemerin is another newly identified adipokine that is possible to have a role in periodontitis firstly reported in our previous study. The aim of the current study is to evaluate the gingival crevicular fluid (GCF) levels of visfatin and chemerin in periodontitis and and compare these adipokine levels with before and after non-surgical periodontal treatment. Twenty-nine patients with Stage III Grade B periodontitis and eighteen healthy subjects included in this cross-sectional cohort study. Clinical periodontal parameters and GCF were obtained from all subjects. Eight weeks after the following non-surgical periodontal treatment including scaling and root planning, samples and clinical periodontal parameters were collected again in the periodontitis group. The levels of adipokines were analyzed with standard enzyme-linked immunosorbent assay. The levels of visfatin and chemerin were statistically significantly higher at periodontitis group as compared to healthy group (P < 0.001). Although, no changes were observed in visfatin levels after periodontal treatment (P > 0.05), chemerin levels were significantly decreased (P < 0.001). Also, no differences were observed as compared to the healthy group (P > 0.05). Visfatin and chemerin may play a role in the periodontal disease process. In addition, it can be considered that the decreased chemerin levels after non-surgical periodontal treatment may play an important role for developing host modulation strategies.
Collapse
Affiliation(s)
- V Umut Bengi
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey.
| | - Erkan Özcan
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - N Işıl Saygun
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - O Sebnem Guler
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Basic Sciences, Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Ankara, Turkey
| |
Collapse
|
14
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
15
|
Zhang X, Weiß T, Cheng MH, Chen S, Ambrosius CK, Czerniak AS, Li K, Feng M, Bahar I, Beck-Sickinger AG, Zhang C. Structural basis of G protein-Coupled receptor CMKLR1 activation and signaling induced by a chemerin-derived agonist. PLoS Biol 2023; 21:e3002188. [PMID: 38055679 PMCID: PMC10699647 DOI: 10.1371/journal.pbio.3002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023] Open
Abstract
Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tina Weiß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Mary Hongying Cheng
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | | | - Anne Sophie Czerniak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Ivet Bahar
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
16
|
Xie D, Bai Z, Zhou G, Li K, Ding J, Zhang H, Jiang J. Chemerin and IL-17 are potential predictors and Chemerin silencing alleviates inflammatory response and bone remodeling in chronic rhinosinusitis. Chem Biol Drug Des 2023; 102:1478-1488. [PMID: 37712455 DOI: 10.1111/cbdd.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Chronic rhinosinusitis (CRS) is an inflammatory disease of paranasal sinuses. This study is formulated to explore the roles of pro-inflammatory factors Chemerin and interleukin-17 (IL-17) in CRS. Patients suffering from CRS without/with nasal polyps (CRSsNP/CRSwNP), along with volunteers, were recruited. CRS rabbit models were constructed by Staphylococcus aureus infection and rabbits were injected with lentiviral vectors of short hairpin RNA-targeting Chemerin (shChemerin), followed by micro-computed tomography (CT) scan. Levels of Chemerin and IL-17 were determined, and histopathological lesions were observed in subjects and CRS rabbits. Correlations between Chemerin/IL-17 level and Lund-Mackay/Lund-Kennedy scores of subjects and the predictive value of Chemerin or IL-17 for CRS were analyzed. In CRS patients and rabbits, inflammatory degrees and the level of Chemerin/IL-17 were increased in pathological tissues or plasma, while Chemerin silencing alleviated CRS symptoms of CRS rabbits. Chemerin and IL-17 were mainly located in the immune cells of pathological tissues and presented the positive correlation with Lund-Mackay/Lund-Kennedy score of CRS patients. Also, they showed high predictive value for CRS. Micro-CT scan uncovered that CRS rabbits had increased bone remodeling, which was alleviated by Chemerin silencing. Collectively, Chemerin and IL-17 are potential predictors and Chemerin silencing alleviates inflammatory response and bone remodeling in chronic rhinosinusitis.
Collapse
Affiliation(s)
- Daoyu Xie
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhixiang Bai
- Department of Otolaryngology, The First People's Hospital of Lin'an District, Hangzhou, China
| | - Guowen Zhou
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Kaijie Li
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jinv Ding
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haiqin Zhang
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianhua Jiang
- Department of Otolaryngology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Noppes K, Groß S, Hannemann A, Markus MRP, Bahls M, Völzke H, Dörr M, Nauck M, Friedrich N, Zylla S. Association of plasma chemerin with all-cause and disease-specific mortality - results from a population-based study. Int J Obes (Lond) 2023; 47:956-962. [PMID: 37491533 PMCID: PMC10511313 DOI: 10.1038/s41366-023-01342-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Various cross-sectional studies have observed an association between high circulating concentrations of the adipokine chemerin and an unfavorable metabolic profile. However, the prognostic value of chemerin for the risk of associated diseases and mortality was examined only in a few studies mostly using small and highly selected patient populations. We aimed to analyze the association between plasma chemerin concentrations and all-cause as well as cause-specific mortality in the general population. STUDY DESIGN AND METHODS From the Study of Health in Pomerania (SHIP), participants of two independent cohorts (SHIP-START-1 [n = 3037], SHIP-TREND-0 [n = 4193]) were followed up for 15 and 9 years (median), respectively. The association between plasma chemerin and all-cause mortality was analyzed using multivariable Cox proportional hazard regression models. Additionally, cause-specific hazards for cardiovascular disease (CVD) and cancer mortality were modeled considering competing events. RESULTS A total number of 507 and 208 deaths occurred during follow-up in SHIP-START-1 and SHIP-TREND-0, respectively. Multivariable regression analyses revealed a significant association between high plasma chemerin concentrations and greater overall mortality that was independent of major confounders. Each 30 ng/mL increase in chemerin was associated with a 17% higher risk of all-cause mortality (95%-confidence interval: 1.10-1.26). Cause-specific analyses further showed that the chemerin concentration was significantly associated with cancer mortality but not with CVD mortality. CONCLUSION The present study detected a positive association between plasma chemerin concentrations and all-cause mortality in a large population-based study sample. Cause-specific analyses have shown that chemerin is likely to play a decisive role in cancer-related deaths. However, a direct association with cardiovascular mortality could not be established.
Collapse
Affiliation(s)
- Katharina Noppes
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Groß
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Marcello R P Markus
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZD (German Center for Diabetes Research), site Greifswald, Greifswald, Germany
| | - Martin Bahls
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- DZD (German Center for Diabetes Research), site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Stephanie Zylla
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.
| |
Collapse
|
18
|
Amend P, Mester P, Schmid S, Müller M, Buechler C, Pavel V. Plasma Chemerin Is Induced in Critically Ill Patients with Gram-Positive Infections. Biomedicines 2023; 11:1779. [PMID: 37509420 PMCID: PMC10376393 DOI: 10.3390/biomedicines11071779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chemerin is a chemoattractant protein abundantly expressed in hepatocytes. Chemerin exerts pro- and anti-inflammatory effects and acts as a pro-resolving protein. Chemerin levels are low in patients with liver cirrhosis and are increased in sepsis. The aim of this study was to identify associations between plasma chemerin levels and underlying diseases as well as causes of severe illness. The cohort included 32 patients with liver cirrhosis who had low systemic chemerin, and who were not considered for further evaluation. Plasma chemerin levels were similar between the 27 patients with systemic inflammatory response syndrome (SIRS), the 34 patients with sepsis and the 63 patients with septic shock. Chemerin in plasma correlated with C-reactive protein and leukocyte count but not with procalcitonin, a clinical marker of bacterial infection. Plasma chemerin did not differ among patients with and without ventilation and patients with and without dialysis. Vasopressor therapy was not associated with altered plasma chemerin levels. Infection with severe acute respiratory syndrome coronavirus 2 had no effect on plasma chemerin levels. Baseline levels of plasma chemerin could not discriminate between survivors and non-survivors. Notably, Gram-positive infection was associated with higher chemerin levels. In summary, the current study suggests that plasma chemerin might serve as an early biomarker for the diagnosis of Gram-positive infections in patients with sepsis.
Collapse
Affiliation(s)
- Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Zhang X, Weiß T, Cheng MH, Chen S, Ambrosius CK, Czerniak AS, Li K, Feng M, Bahar I, Beck-Sickinger AG, Zhang C. Structural basis of CMKLR1 signaling induced by chemerin9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544295. [PMID: 37333145 PMCID: PMC10274904 DOI: 10.1101/2023.06.09.544295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Tina Weiß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Mary Hongying Cheng
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11974, USA
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Carla Katharina Ambrosius
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Anne Sophie Czerniak
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, OH44106, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ivet Bahar
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11974, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11974, USA
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
20
|
Ahmad B, Friar EP, Vohra MS, Khan N, Serpell CJ, Garrett MD, Loo JSE, Fong IL, Wong EH. Hydroxylated polymethoxyflavones reduce the activity of pancreatic lipase, inhibit adipogenesis and enhance lipolysis in 3T3-L1 mouse embryonic fibroblast cells. Chem Biol Interact 2023; 379:110503. [PMID: 37084996 DOI: 10.1016/j.cbi.2023.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic gene expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Nasar Khan
- R3 Medical Research, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, United States
| | - Christopher J Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
21
|
Zhou X, Zhang H, Jiang Y, Wei L, Chen Y, Zhang J, Gao P, Zhu S, Fang C, Du Y, Su R, He M, Yu J, Wang S, Ding W, Feng L. The role of chemerin in the regulation of cGAS-STING pathway in gestational diabetes mellitus placenta. FASEB J 2023; 37:e22806. [PMID: 36786722 DOI: 10.1096/fj.202201611r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Recent studies already confirmed that placenta mitochondrial dysfunction is associated with the progression of gestational diabetes mellitus (GDM). Besides, a possible relationship between adipokine chemerin and disulfide-bond A oxidoreductase-like protein (DsbA-L) had been revealed, whereas the potential interaction remains unclear. In addition, very little is still known about the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and its mechanisms of action in the context of GDM. The present study aims to investigate the underlying mechanism of cGAS-STING pathway and its regulatory relationship with chemerin in GDM. A total of 50 participants, including 25 cases of GDM patients and 25 pregnant women with normal glucose tolerance, were enrolled, and their placenta tissues at term labor were collected. Besides, an insulin resistance cell model was established on the human trophoblastic cell line to explore the molecular mechanism of chemerin on cGAS-STING pathway. Results showed that there were mitochondrial pathological changes in GDM placenta, accompanied by the decreased expression of DsbA-L, increased level of chemerin, and the activation of cGAS-STING pathway. In the insulin resistant cell model, overexpression of chemerin upregulated protein expression of DsbA-L, and recombinant chemerin presented time-dependent inhibition on the cGAS-STING pathway, but this effect was not dependent on DsbA-L. In conclusion, elevated chemerin is probably a protective mechanism, which may be a potential therapeutic strategy for GDM.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiting Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenyun Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Krajewska M, Witkowska-Sędek E, Rumińska M, Kucharska AM, Stelmaszczyk-Emmel A, Sobol M, Majcher A, Pyrżak B. The link between vitamin D, chemerin and metabolic profile in overweight and obese children - preliminary results. Front Endocrinol (Lausanne) 2023; 14:1143755. [PMID: 37152969 PMCID: PMC10159269 DOI: 10.3389/fendo.2023.1143755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Vitamin D affects adipogenesis, oxidative stress, inflammation, secretion of adipocytokines, lipid metabolism and thermogenesis. Some researchers postulate that those effects could be exerted by the influence of vitamin D on chemerin levels. Aim of the study We aimed to investigate if there is a link between serum 25-hydroksyvitamin D [25(OH)D], chemerin and metabolic profile in overweight and obese children before and after vitamin D supplementation. Material and methods The prospective study included 65 overweight and obese children aged 9.08-17.5 years and 26 peers as a control. None of the patients in the study group had received vitamin D within the last twelve months before the study. Results The study group had lower baseline 25(OH)D (p<0.001) and higher chemerin (p<0.001), triglycerides (TG, p<0.001), triglycerides/high density lipoprotein cholesterol (TG/HDL-C, p<0.001), C-reactive protein (CRP, p<0.05), fasting insulin (p<0.001), Homeostasis Model Assessment - Insulin Resistance (HOMA-IR, p<0.001), alanine aminotransferase (ALT, p<0.001) and uric acid (p<0.001) compared to the control group. Baseline vitamin D was related to fasting insulin (R=-0.29, p=0.021), HOMA-IR (R=-0.30, p=0.016), HDL-C (R=0.29, p=0.020) and uric acid (R=-0.28, p=0.037) in the study group. Baseline chemerin was related to insulin at 30' (R=0.27, p=0.030), 60' (R=0.27, p=0.033), 90' (R=0.26, p=0.037) and 120' (R=0.26, p=0.040) during the oral glucose tolerance test (OGTT) and ALT (R=0.25, p=0.041) in the study group. Correlation between vitamin D and chemerin (R=-0.39, p=0.046) was found only in the control group. After six months of vitamin D supplementation a decrease in CRP (p<0.01), total cholesterol (p<0.05), ALT (p<0.01), glucose at 150' OGTT (p<0.05) was observed. Moreover, we noticed a tendency for negative association between 25(OH)D and chemerin levels (p=0.085). Multivariable backward linear regression models were build using baseline vitamin D, baseline chemerin and six months chemerin as the dependent variables. Conclusions Our study confirmed that vitamin D has positive effect on metabolic profile in overweight and obese children. The relationship between vitamin D and chemerin is not clear, nevertheless we have observed a tendency to decrease chemerin concentrations after improving vitamin D status, even without a significant reduction in body fat mass.
Collapse
Affiliation(s)
- Maria Krajewska
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Maria Krajewska,
| | | | - Małgorzata Rumińska
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Kucharska
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Maria Sobol
- Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Majcher
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Pyrżak
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Ismaiel A, Ashfaq MZ, Leucuta DC, Ismaiel M, Ensar Ismaiel D, Popa SL, Dumitrascu DL. Chemerin Levels in Acute Coronary Syndrome: Systematic Review and Meta-Analysis. Lab Med 2022; 53:552-560. [PMID: 35770793 DOI: 10.1093/labmed/lmac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVE We evaluated the relevant published studies exploring the association between chemerin concentrations and acute coronary syndromes (ACSs). METHODS A systematic search was performed in October 2021 using PubMed, Scopus, Embase, and Cochrane Library. We included full articles and assessed their quality using the Newcastle-Ottawa score. RESULTS We found 6 studies in the systematic review and 5 of these were included in our meta-analysis. Mean difference (MD) of 41.69 ng/mL (95% CI, 10.07-73.30), 132.14 ng/mL (95% CI, -102.12-366.40), and 62.10 ng/mL (95% CI, 10.31-113.89) in chemerin levels was seen in ACS patients vs control subjects, ACS patients vs stable angina pectoris patients (SAP), and type 2 diabetes mellitus (T2DM) ACS patients vs nondiabetic ACS patients, respectively. CONCLUSION Chemerin levels were significantly elevated in patients with ACS compared to controls, as well as in T2DM-ACS patients compared to nondiabetic ACS patients. However, no significant MD in chemerin levels was observed between SAP and ACS patients.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mohammad Zeeshan Ashfaq
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mohamed Ismaiel
- Department of Surgery, St Michael's Hospital, Dublin, Ireland
| | | | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
25
|
Jiang B, Wen C, Sun Y, Li W, Liu C, Feng J, Su Y. A novel chemerin receptor 1 (Chemerin1) takes part in the immune response of cobia (Rachycentron canadum). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100057. [DOI: 10.1016/j.fsirep.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
|
26
|
Wu J, Shen S, Liu T, Ren X, Zhu C, Liang Q, Cui X, Chen L, Cheng P, Cheng W, Wu A. Chemerin enhances mesenchymal features of glioblastoma by establishing autocrine and paracrine networks in a CMKLR1-dependent manner. Oncogene 2022; 41:3024-3036. [PMID: 35459783 PMCID: PMC9122825 DOI: 10.1038/s41388-022-02295-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) with mesenchymal features exhibits enhanced chemotherapeutic resistance and results in reduced overall survival. Recent studies have suggested that there is a positive correlation between the GBM mesenchymal status and immune cell infiltration. However, the mechanisms by which GBM acquires its mesenchymal features in a tumor immune microenvironment-dependent manner remains unknown. Here, we uncovered a chemerin-mediated autocrine and paracrine network by which the mesenchymal phenotype of GBM cells is strengthened. We identified chemerin as a prognostic secretory protein mediating the mesenchymal phenotype-promoting network between tumor-associated macrophages (TAMs) and tumor cells in GBM. Mechanistically, chemerin promoted the mesenchymal features of GBM by suppressing the ubiquitin-proteasomal degradation of CMKLR1, a chemerin receptor predominantly expressed on TAMs and partially expressed on GBM cells, thereby enhancing NF-κB pathway activation. Moreover, chemerin was found to be involved in the recruitment of TAMs in the GBM tumor microenvironment. We revealed that chemerin also enhances the mesenchymal phenotype-promoting ability of TAMs and promotes their M2 polarization via a CMKLR1/NF-κB axis, which further exacerbates the mesenchymal features of GBM. Blocking the chemerin/CMKLR1 axis with 2-(α-naphthoyl) ethyltrimethylammonium iodide disrupted the mesenchymal network and suppressed tumor growth in GBM. These results suggest the therapeutic potential of targeting the chemerin/CMKLR1 axis to block the mesenchymal network in GBM.
Collapse
Affiliation(s)
- Jianqi Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiufang Ren
- Departement of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
28
|
Aragón-Herrera A, Otero-Santiago M, Anido-Varela L, Moraña-Fernández S, Campos-Toimil M, García-Caballero T, Barral L, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, Moscoso I, Lage R, González-Juanatey JR, Feijóo-Bandín S, Lago F. The Treatment With the SGLT2 Inhibitor Empagliflozin Modifies the Hepatic Metabolome of Male Zucker Diabetic Fatty Rats Towards a Protective Profile. Front Pharmacol 2022; 13:827033. [PMID: 35185578 PMCID: PMC8847595 DOI: 10.3389/fphar.2022.827033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in patients with Type 2 Diabetes Mellitus (T2DM)) trial evidenced the potential of sodium-glucose cotransporter 2 (SGLT2) inhibitors for the treatment of patients with diabetes and cardiovascular disease. Recent evidences have shown the benefits of the SGLT2 inhibitor empagliflozin on improving liver steatosis and fibrosis in patients with T2DM. Metabolomic studies have been shown to be very useful to improve the understanding of liver pathophysiology during the development and progression of metabolic hepatic diseases, and because the effects of empagliflozin and of other SGLT2 inhibitors on the complete metabolic profile of the liver has never been analysed before, we decided to study the impact on the liver of male Zucker diabetic fatty (ZDF) rats of a treatment for 6 weeks with empagliflozin using an untargeted metabolomics approach, with the purpose to help to clarify the benefits of the use of empagliflozin at hepatic level. We found that empagliflozin is able to change the hepatic lipidome towards a protective profile, through an increase of monounsaturated and polyunsaturated glycerides, phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylinositols and lysophosphatidylcholines. Empagliflozin also induces a decrease in the levels of the markers of inflammation IL-6, chemerin and chemerin receptor in the liver. Our results provide new evidences regarding the molecular pathways through which empagliflozin could exert hepatoprotector beneficial effects in T2DM.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luis Barral
- Group of Polymers, Department of Physics and Earth Sciences, University of La Coruña, La Coruña, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Gong R, Tang X, Jiang Z, Luo G, Dong C, Han X. Serum 25(OH)D Levels Modify the Association between Triglyceride and IR: A Cross-Sectional Study. Int J Endocrinol 2022; 2022:5457087. [PMID: 35592754 PMCID: PMC9113899 DOI: 10.1155/2022/5457087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Triglycerides and 25(OH)D had been reported as correlates of IR, but the results suggest substantial heterogeneity across races. In addition, little research reported on whether different 25(OH)D levels affect triglycerides and IR. Therefore, a similar study on the US population would be a great addition to the current one. This study investigated the association between triglycerides and IR at different 25(OH)D levels. METHODS A total of 19,926 participants were included, each containing specific indicators for the study project. IR was estimated as a HOMA-IR index ≥2.73. Four multivariate logistic regression models were developed to analyze the association between TG and IR and whether different 25(OH)D levels influenced this association. Smoothed fitting curves were plotted. RESULTS Triglyceride was significantly associated with IR (OR: 1.3, 95 CI %), while this association received different 25(OH)D levels (P for interaction <0.001). The effect value OR was 1.33 with the high levels, and its effect value OR was 1.28 with the low levels. CONCLUSION This study demonstrates that triglyceride levels are significantly associated with insulin in the US adult population and can be used as a predictor of IR. This correlation was compromised at different 25 (OH)D levels, so future studies need to be explored in more ethnically diverse contexts.
Collapse
Affiliation(s)
| | - Xin Tang
- Qinghai University, Xining, Qinghai 810016, China
| | - Ziying Jiang
- Qinghai University, Xining, Qinghai 810016, China
| | - Gang Luo
- Qinghai University, Xining, Qinghai 810016, China
| | - Chaofan Dong
- Qinghai University, Xining, Qinghai 810016, China
| | - Xiuxia Han
- Renal Department, Dezhou People's Hospital, Dezhou, Shandong Province 25300, China
| |
Collapse
|
30
|
|