1
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025; 209:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
2
|
Peng L, Deng S, Li J, Zhang Y, Zhang L. Single-Cell RNA Sequencing in Unraveling Acquired Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: New Perspectives. Int J Mol Sci 2025; 26:1483. [PMID: 40003951 PMCID: PMC11855476 DOI: 10.3390/ijms26041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated remarkable efficacy in treating non-small cell lung cancer (NSCLC), but acquired resistance greatly reduces efficacy and poses a significant challenge to patients. While numerous studies have investigated the mechanisms underlying EGFR-TKI resistance, its complexity and diversity make the existing understanding still incomplete. Traditional approaches frequently struggle to adequately reveal the process of drug resistance development through mean value analysis at the overall cellular level. In recent years, the rapid development of single-cell RNA sequencing technology has introduced a transformative method for analyzing gene expression changes within tumor cells at a single-cell resolution. It not only deepens our understanding of the tumor microenvironment and cellular heterogeneity associated with EGFR-TKI resistance but also identifies potential biomarkers of resistance. In this review, we highlight the critical role of single-cell RNA sequencing in lung cancer research, with a particular focus on its application to exploring the mechanisms of EGFR-TKI-acquired resistance in NSCLC. We emphasize its potential for elucidating the complexity of drug resistance mechanism and its promise in informing more precise and personalized treatment strategies. Ultimately, this approach aims to advance NSCLC treatment toward a new era of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.P.); (S.D.); (J.L.); (Y.Z.)
| |
Collapse
|
3
|
Chen Y, Wang M, Huang S, Han L, Cai Y, Xu X, Sun S, Chen Z, Chen J, Yu J, Du H, Li H, Zheng J, Ma B, Wang G. Ectopic expression of NKG7 enhances CAR-T function and improves the therapeutic efficacy in liquid and solid tumors. Pharmacol Res 2024; 210:107506. [PMID: 39551173 DOI: 10.1016/j.phrs.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Lack of biopsies after treatment, especially in solid tumors, restricts the understanding of chimeric antigen receptor (CAR)-T cells -related characteristic in vivo, thus hindering the development of strategies to improve CAR-T cells efficacy. Here, we applied nineteen individual single-cell RNA sequencing (scRNA-seq) data from clinical samples of digestive cancers to explore the characteristics of tumor-infiltrating T cells (TILs) to identify effective targets which might be benefit for enhancing the function of CAR-T cells. The data showed that natural killer cell granule protein 7 (NKG7) was overexpressed in TILs and positively associated with anti-PD1 or anti-CTLA4 therapy in digestive cancers. Subsequently, we found that ectopic expression of NKG7 significantly improved the cytotoxicity of B7H3-targeting CAR-T cells to B7H3-positive digestive cancer cells (MKN45, Huh7, HuCCT-1, SW620 and PANC-1 cells), as well as promoted the TNF-α and IL-2 expression. Furthermore, in a CD19-targeting CAR-T model, the therapeutic efficacy was also found increased after NKG7 overexpression. Mechanically, NKG7 preserved surface CAR expression and promoted CAR-T cell proliferation after exposing to relative tumor antigen. These results indicated that it may be feasible to explore single-cell sequencing data of clinical tumor samples to find strategies to improve CAR-T function, and that ectopic expression of NKG7 is an effective strategy to improve the therapeutic efficacy of CAR-T cells against tumors.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Shuxin Huang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ying Cai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Xiaodi Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Shuwen Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Zhaokai Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junze Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; The first Clinical Medical School, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Jiatian Yu
- Department of Human Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongwei Du
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Yu Y, Ye J, Wang R, Wang J, Wang J, Xu Q, Wang P, Wang B, Zhang Y. Research trends and hotspots of the applications of single-cell RNA sequencing in cardiovascular diseases: a bibliometric and visualized study. Ann Med Surg (Lond) 2024; 86:7164-7177. [PMID: 39649887 PMCID: PMC11623828 DOI: 10.1097/ms9.0000000000002681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 12/11/2024] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading causes of death globally. The use of single-cell RNA sequencing (scRNA-seq) in CVDs has gained significant attention in recent years, and there is a growing body of literature on the subject. However, a thorough and impartial analysis of the existing state and trends of scRNA-seq in CVDs is lacking. This study aims to examine the development of scRNA-seq in CVDs using bibliometric and visualized analysis. Methods Global publications on scRNA-seq and CVDs from 2009 to 2023 were extracted from the Web of Science Core Collection (WoSCC) database. The R package "Bibliometrix", VOSviewer, and CiteSpace were employed to perform a bibliometric study. Results After applying the screening criteria and omitting documents that met exclusive criteria, this bibliometric study included 1170 papers. These were authored by 8595 scholars from 1565 organizations in 57 countries or regions and were published in 369 journals, with 51 073 co-cited references included. Publication volume, citations, and relative research interest index focusing on this field have dramatically increased since 2019. The cooperation network showed that the USA, the Chinese Academy of Medical Sciences, and Qingbo Xu were the most active countries, institutes, and authors in this field, respectively. Circulation Research was the journal with the most publications, which was confirmed to be the top core source by Bradford's law. The hotspots and emerging direction in the field manifest in (1) three CVDs (atherosclerosis, myocardial infarction, and heart failure) and (2) three cell types (macrophage, fibroblast, and smooth muscle cell). Conclusions Our study provides a systematic visualization of the research literature on scRNA-seq in CVDs and provides guidance and reference for understanding the current research status and discovering new research directions.
Collapse
Affiliation(s)
- Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Juan Ye
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Rubing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - JingJing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Junnan Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Qiumeng Xu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Pei Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Bei Wang
- Department of Nursing, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Yuan Q, Lv N, Chen Q, Shen S, Wang Y, Tong J. Application of single cell sequencing technology in ovarian cancer research (review). Funct Integr Genomics 2024; 24:144. [PMID: 39196391 PMCID: PMC11358195 DOI: 10.1007/s10142-024-01432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Ovarian cancer is a malignant tumor of ovary. It has the characteristics of difficult early diagnosis, poor late curative effect and high recurrence rate. It is the biggest disease that seriously threatens women's health. Single cell sequencing technology refers to sequencing the genetic information carried by it at the single cell level to obtain the gene sequence, transcript, protein and epigenetic expression profile information of a certain cell type and conduct integrated analysis. It has unique advantages in the study of tumor occurrence and evolution, and can provide new methods for the study of ovarian cancer. This paper reviews the single cell sequencing technology and its application in ovarian cancer.
Collapse
Affiliation(s)
- Qiqolei Yuan
- Department of The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, 310006, Zhejiang, P.R. China
| | - Nengyuan Lv
- Department of Obstetrics and Gynecology, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), No. 666 Dangui Road, Shengzhou, 312400, Zhejiang, China
| | - Qianying Chen
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, 310006, Zhejiang, P.R. China
| | - Siyi Shen
- Community Health Service Center, Donghu Street, Linping District, Hangzhou, 311103, Zhejiang, China
| | - Yahui Wang
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, 310006, Zhejiang, P.R. China
| | - Jinyi Tong
- Department of The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, 310006, Zhejiang, P.R. China.
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Xihu University of Medicine, 261 Huansha Road, Shangcheng, Hangzhou, 310006, Zhejiang, P.R. China.
| |
Collapse
|
6
|
Wu J, Li W, Su J, Zheng J, Liang Y, Lin J, Xu B, Liu Y. Integration of single-cell sequencing and bulk RNA-seq to identify and develop a prognostic signature related to colorectal cancer stem cells. Sci Rep 2024; 14:12270. [PMID: 38806611 PMCID: PMC11133358 DOI: 10.1038/s41598-024-62913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.
Collapse
Affiliation(s)
- Jiale Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wanyu Li
- Well Lead Medical Co., Ltd., Guangzhou, 511434, Guangdong, China
| | - Junyu Su
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiamin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanwen Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiansuo Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Bilian Xu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Yi Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
7
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zhang D, Zhao F, Liu H, Guo P, Li Z, Li S. FABP6 serves as a new therapeutic target in esophageal tumor. Aging (Albany NY) 2024; 16:1640-1662. [PMID: 38277205 PMCID: PMC10866426 DOI: 10.18632/aging.205448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors with high incidence and mortality rates. Despite the continuous development of treatment options, the prognosis for esophageal cancer patients remains poor. Therefore, there is an urgent need for new diagnostic and therapeutic targets in clinical practice to improve the survival of patients with esophageal cancer. METHODS In this study, we conducted a comprehensive scRNA-seq analysis of the tumor microenvironment in primary esophageal tumors to elucidate cell composition and heterogeneity. Using Seurat, we identified eight clusters, encompassing non-immune cells (fibroblasts, myofibroblasts, endothelial cells, and epithelial cells) and immunocytes (myeloid-derived cells, T cells, B cells, and plasma cells). Compared to normal tissues, tumors exhibited an increased proportion of epithelial cells and alterations in immune cell infiltration. Analysis of epithelial cells revealed a cluster (cluster 0) with a high differentiation score and early distribution, suggesting its importance as a precursor cell. RESULTS Cluster 0 was characterized by high expression of FABP6, indicating a potential role in fatty acid metabolism and tumor growth. T cell analysis revealed shifts in the balance between Treg and CD8+ effector T cells in tumor tissues. Cellular communication analysis identified increased interactions between FABP6+ tumor cells and T cells, with the involvement of the MIF-related pathway and the CD74-CD44 interaction. This study provides insights into the cellular landscape and immune interactions within esophageal tumors, contributing to a better understanding of tumor heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Haitao Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010031, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhirong Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
9
|
Chen L, Wan Y, Yang T, Zhang Q, Zeng Y, Zheng S, Ling Z, Xiao Y, Wan Q, Liu R, Yang C, Huang G, Zeng Q. Bibliometric and visual analysis of single-cell sequencing from 2010 to 2022. Front Genet 2024; 14:1285599. [PMID: 38274109 PMCID: PMC10808606 DOI: 10.3389/fgene.2023.1285599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Single-cell sequencing (SCS) is a technique used to analyze the genome, transcriptome, epigenome, and other genetic data at the level of a single cell. The procedure is commonly utilized in multiple fields, including neurobiology, immunology, and microbiology, and has emerged as a key focus of life science research. However, a thorough and impartial analysis of the existing state and trends of SCS-related research is lacking. The current study aimed to map the development trends of studies on SCS during the years 2010-2022 through bibliometric software. Methods: Pertinent papers on SCS from 2010 to 2022 were obtained using the Web of Science Core Collection. Research categories, nations/institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords were analyzed using VOSviewer, the R package "bibliometric", and CiteSpace. Results: The bibliometric analysis included 9,929 papers published between 2010 and 2022, and showed a consistent increase in the quantity of papers each year. The United States was the source of the highest quantity of articles and citations in this field. The majority of articles were published in the periodical Nature Communications. Butler A was the most frequently quoted author on this topic, and his article "Integrating single-cell transcriptome data across diverse conditions, technologies, and species" has received numerous citations to date. The literature and keyword analysis showed that studies involving single-cell RNA sequencing (scRNA-seq) were prominent in this discipline during the study period. Conclusion: This study utilized bibliometric techniques to visualize research in SCS-related domains, which facilitated the identification of emerging patterns and future directions in the field. Current hot topics in SCS research include COVID-19, tumor microenvironment, scRNA-seq, and neuroscience. Our results are significant for scholars seeking to identify key issues and generate new research ideas.
Collapse
Affiliation(s)
- Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of BasicMedical Sciences, Southern Medical University, Guangzhou, China
| | - Tingting Yang
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Zhishan Ling
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yupeng Xiao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qingyi Wan
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ruili Liu
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, Xia J, Zhao X, Wang X, Li Q, Rao J, Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol 2023; 16:98. [PMID: 37612741 PMCID: PMC10463514 DOI: 10.1186/s13045-023-01494-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Collapse
Affiliation(s)
- Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
12
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
13
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
14
|
Han Y, Wang D, Peng L, Huang T, He X, Wang J, Ou C. Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol 2022; 15:59. [PMID: 35549970 PMCID: PMC9096771 DOI: 10.1186/s13045-022-01280-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Single-cell sequencing (SCS) is an emerging high-throughput technology that can be used to study the genomics, transcriptomics, and epigenetics at a single cell level. SCS is widely used in the diagnosis and treatment of various diseases, including cancer. Over the years, SCS has gradually become an effective clinical tool for the exploration of tumor metastasis mechanisms and the development of treatment strategies. Currently, SCS can be used not only to analyze metastasis-related malignant biological characteristics, such as tumor heterogeneity, drug resistance, and microenvironment, but also to construct metastasis-related cell maps for predicting and monitoring the dynamics of metastasis. SCS is also used to identify therapeutic targets related to metastasis as it provides insights into the distribution of tumor cell subsets and gene expression differences between primary and metastatic tumors. Additionally, SCS techniques in combination with artificial intelligence (AI) are used in liquid biopsy to identify circulating tumor cells (CTCs), thereby providing a novel strategy for treating tumor metastasis. In this review, we summarize the potential applications of SCS in the field of tumor metastasis and discuss the prospects and limitations of SCS to provide a theoretical basis for finding therapeutic targets and mechanisms of metastasis.
Collapse
Affiliation(s)
- Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, 410031, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Aliya S, Lee H, Alhammadi M, Umapathi R, Huh YS. An Overview on Single-Cell Technology for Hepatocellular Carcinoma Diagnosis. Int J Mol Sci 2022; 23:1402. [PMID: 35163329 PMCID: PMC8835749 DOI: 10.3390/ijms23031402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma is a primary liver cancer caused by the accumulation of genetic mutation patterns associated with epidemiological conditions. This lethal malignancy exhibits tumor heterogeneity, which is considered as one of the main reasons for drug resistance development and failure of clinical trials. Recently, single-cell technology (SCT), a new advanced sequencing technique that analyzes every single cell in a tumor tissue specimen, aids complete insight into the genetic heterogeneity of cancer. This helps in identifying and assessing rare cell populations by analyzing the difference in gene expression pattern between individual cells of single biopsy tissue which normally cannot be identified from pooled cell gene expression pattern (traditional sequencing technique). Thus, SCT improves the clinical diagnosis, treatment, and prognosis of hepatocellular carcinoma as the limitations of other techniques impede this cancer research progression. Application of SCT at the genomic, transcriptomic, and epigenomic levels to promote individualized hepatocellular carcinoma diagnosis and therapy. The current review has been divided into ten sections. Herein we deliberated on the SCT, hepatocellular carcinoma diagnosis, tumor microenvironment analysis, single-cell genomic sequencing, single-cell transcriptomics, single-cell omics sequencing for biomarker development, identification of hepatocellular carcinoma origination and evolution, limitations, challenges, conclusions, and future perspectives.
Collapse
Affiliation(s)
| | | | | | | | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Inha-ro 100, Incheon 22212, Korea; (S.A.); (H.L.); (M.A.); (R.U.)
| |
Collapse
|
16
|
Li J, Yu N, Li X, Cui M, Guo Q. The Single-Cell Sequencing: A Dazzling Light Shining on the Dark Corner of Cancer. Front Oncol 2021; 11:759894. [PMID: 34745998 PMCID: PMC8566994 DOI: 10.3389/fonc.2021.759894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tumorigenesis refers to the process of clonal dysplasia that occurs due to the collapse of normal growth regulation in cells caused by the action of various carcinogenic factors. These “successful” tumor cells pass on the genetic templates to their generations in evolutionary terms, but they also constantly adapt to ever-changing host environments. A unique peculiarity known as intratumor heterogeneity (ITH) is extensively involved in tumor development, metastasis, chemoresistance, and immune escape. An understanding of ITH is urgently required to identify the diversity and complexity of the tumor microenvironment (TME), but achieving this understanding has been a challenge. Single-cell sequencing (SCS) is a powerful tool that can gauge the distribution of genomic sequences in a single cell and the genetic variability among tumor cells, which can improve the understanding of ITH. SCS provides fundamental ideas about existing diversity in specific TMEs, thus improving cancer diagnosis and prognosis prediction, as well as improving the monitoring of therapeutic response. Herein, we will discuss advances in SCS and review SCS application in tumors based on current evidence.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Yu
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengna Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|