1
|
Linko S, Boursier G, Bernabeu-Andreu FA, Dzneladze N, Vanstapel F, Brguljan PM, Tosheska-Trajkovska K, Mehay H, Panteghini M, Brugnoni D, Milinkovic N, Lohmander M, Šprongl L, Çubukçu HC, Thelen M. EN ISO 15189 revision: EFLM Committee Accreditation and ISO/CEN standards (C: A/ISO) analysis and general remarks on the changes. Clin Chem Lab Med 2025; 63:1084-1098. [PMID: 39752732 DOI: 10.1515/cclm-2024-1451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 04/26/2025]
Abstract
The EN ISO 15189:2022 standard, titled "Medical laboratories - Requirements for quality and competence," is a significant update to the regulations for medical laboratories. The revised standard was published on December 6, 2022, replacing both EN ISO 15189:2012 and EN ISO 22870:2016. Key objectives of the revision include: 1. Alignment with ISO/IEC 17025:2017, 2. Removal of unintended prescription, 3. Focus on patient interest and safety, 4. Minimization of new requirements, and 5. Improved clarity of text. Dedicating to harmonizing accreditation processes across Europe the EFLM Committee on Accreditation and ISO/CEN standards (C: A/ISO) has produced this guidance document to assist the laboratory medicine community in understanding and implementing the criteria of the EN ISO 15189 revision. Two main objectives of the guidance in educating both laboratories and accreditation bodies with their assessors as well as other stakeholders in laboratory medicine were agreed on. Firstly, to clarify the relevant changes covering all paragraphs of the standard and secondly to make an impact analysis on previous C: A/ISO guidance documents.
Collapse
Affiliation(s)
| | - Guilaine Boursier
- Department of Genetics, Rare Diseases and Personalized Medicine Rare Diseases and Autoinflammatory Unit, CHU Montpellier, Montpellier, France
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, University Ss."Kiril and Metodij", Skopje, North Macedonia
| | | | | | - Florent Vanstapel
- Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
- Department of Public Health, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Pika Meško Brguljan
- Department of Clinical Chemistry, University Clinic for Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Katerina Tosheska-Trajkovska
- Department of Medical and Experimental Biochemistry, Faculty of Medicine, University Ss."Kiril and Metodij", Skopje, North Macedonia
| | - Hélène Mehay
- Healthcare Division, COFRAC French Accreditation Committee, Paris, France
| | - Mauro Panteghini
- Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Duilio Brugnoni
- Central Laboratory for Clinical Chemistry, Spedali Civili, Brescia, Italy
| | - Neda Milinkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Luděk Šprongl
- Clinical Laboratory, Hospital Kladno, Kladno, Czech Republic
| | - Hikmet Can Çubukçu
- Department of Rare Diseases, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Türkiye
| | - Marc Thelen
- SKML, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Çubukçu HC, Thelen M, Plebani M, Panteghini M. IFCC recommendations for internal quality control practice: a missed opportunity. Clin Chem Lab Med 2025:cclm-2025-0486. [PMID: 40287820 DOI: 10.1515/cclm-2025-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The IFCC Task Force on Global Lab Quality (TF-GLQ) has recently released a new guidance for internal quality control (IQC) practice through an approach translating the general principles as stated in the ISO 15189:2022 standard to a series of practical recommendations. The paper contains however important inaccuracies and shortcomings that, in our opinion, make it a missed opportunity for providing a updated guidance for laboratory professionals. In particular, four important issues are discussed: a) how to design IQC strategies in the traceability era, b) how to define IQC acceptance limits, c) how to estimate measurement uncertainty using IQC data, and d) how to manage comparability between the results provided by different analyzers in the same laboratory. Our analysis underscores the necessity for a more systematic, updated, and evidence-based approach to produce an IQC recommendation in line with the IFCC tradition.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Turkiye
| | - Marc Thelen
- SKML, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mauro Panteghini
- Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
3
|
Çubukçu HC. Computer simulation approaches to evaluate the interaction between analytical performance characteristics and clinical (mis)classification: a complementary tool for setting indirect outcome-based analytical performance specifications. Clin Chem Lab Med 2025:cclm-2024-1195. [PMID: 39870627 DOI: 10.1515/cclm-2024-1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Simulation-based approaches for setting indirect outcome-based analytical performance specifications (APS) predominantly involve test repetition through analytical reruns or resampling. These methodologies assess the agreement between original and simulated measurement results, determining the APS corresponding to pre-established performance thresholds. For APS related to imprecision and bias, both analytical performance characteristics (APCs) are typically considered in simulations, whereas for APS regarding measurement uncertainty, bias is excluded in alignment with traceability standards. This paper introduces the "APS Simulator," a novel tool designed to complement the existing APS Calculator by simulating APS under various scenarios involving imprecision, bias, and measurement uncertainty. The APS Simulator facilitates simulations using distinct analytical rerun and resampling models, enabling laboratory professionals to explore a wide range of performance levels for their specific needs. While the APS Simulator provides valuable insights, significant challenges remain in the broader application of indirect outcome-based APS. These include incorporating sources of diagnostic uncertainty, setting appropriate thresholds for performance metrics, validating clinical decision limits, and accounting for population data characteristics. Addressing these limitations will be essential to enhancing the standardization and robustness of APS determination. The source code and desktop application for the APS Simulator are freely available at https://github.com/hikmetc/APS_Simulator, providing a user-friendly platform for researchers and clinicians to further explore these methodologies.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Türkiye
| |
Collapse
|
4
|
Jones GRD. Using analytical performance specifications in a medical laboratory. Clin Chem Lab Med 2024; 62:1512-1519. [PMID: 38624006 DOI: 10.1515/cclm-2024-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Analytical performance specifications (APS) are used for the quantitative assessment of assay analytical performance, with the aim of providing information appropriate for clinical care of patients. One of the major locations where APS are used is in the routine clinical laboratory. These may be used to assess and monitor assays in a range of settings including method selection, method verification or validation, external quality assurance, internal quality control and assessment of measurement uncertainty. The aspects of assays that may be assessed include imprecision, bias, selectivity, sample type, analyte stability and interferences. This paper reviews the practical use of APS in a routine clinical laboratory, using the laboratory I supervise as an example.
Collapse
Affiliation(s)
- Graham Ross Dallas Jones
- Department of Chemical pathology, SydPath, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Facult of Medicine, University of NSW, Kensington, Australia
| |
Collapse
|
5
|
Plebani M. Harmonizing the post-analytical phase: focus on the laboratory report. Clin Chem Lab Med 2024; 62:1053-1062. [PMID: 38176022 DOI: 10.1515/cclm-2023-1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The final, post-analytical, phase of laboratory testing is increasingly recognized as a fundamental step in maximizing quality and effectiveness of laboratory information. There is a need to close the loop of the total testing cycle by improving upon the laboratory report, and its notification to users. The harmonization of the post-analytical phase is somewhat complicated, mainly because it calls for communication that involves parties speaking different languages, including laboratorians, physicians, information technology specialists, and patients. Recently, increasing interest has been expressed in integrated diagnostics, defined as convergence of imaging, pathology, and laboratory tests with advanced information technology (IT). In particular, a common laboratory, radiology and pathology diagnostic reporting system that integrates text, sentinel images and molecular diagnostic data to an integrated, coherent interpretation enhances management decisions and improves quality of care.
Collapse
Affiliation(s)
- Mario Plebani
- Clinical Biochemistry and Clinical Molecular Biology, University of Padova, Padova, Italy
- Department of Pathology, University of Texas, Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Çubukçu HC, Vanstapel F, Thelen M, van Schrojenstein Lantman M, Bernabeu-Andreu FA, Meško Brguljan P, Milinkovic N, Linko S, Panteghini M, Boursier G. APS calculator: a data-driven tool for setting outcome-based analytical performance specifications for measurement uncertainty using specific clinical requirements and population data. Clin Chem Lab Med 2024; 62:597-607. [PMID: 37978287 DOI: 10.1515/cclm-2023-0740] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES According to ISO 15189:2022, analytical performance specifications (APS) should relate to intended clinical use and impact on patient care. Therefore, we aimed to develop a web application for laboratory professionals to calculate APS based on a simulation of the impact of measurement uncertainty (MU) on the outcome using the chosen decision limits, agreement thresholds, and data of the population of interest. METHODS We developed the "APS Calculator" allowing users to upload and select data of concern, specify decision limits and agreement thresholds, and conduct simulations to determine APS for MU. The simulation involved categorizing original measurand concentrations, generating measured (simulated) results by introducing different degrees of MU, and recategorizing measured concentrations based on clinical decision limits and acceptable clinical misclassification rates. The agreements between original and simulated result categories were assessed, and values that met or exceeded user-specified agreement thresholds that set goals for the between-category agreement were considered acceptable. The application generates contour plots of agreement rates and corresponding MU values. We tested the application using National Health and Nutrition Examination Survey data, with decision limits from relevant guidelines. RESULTS We determined APS for MU of six measurands (blood total hemoglobin, plasma fasting glucose, serum total and high-density lipoprotein cholesterol, triglycerides, and total folate) to demonstrate the potential of the application to generate APS. CONCLUSIONS The developed data-driven web application offers a flexible tool for laboratory professionals to calculate APS for MU using their chosen decision limits and agreement thresholds, and the data of the population of interest.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- General Directorate of Health Services, Rare Diseases Department, Turkish Ministry of Health, Ankara, Türkiye
- Hacettepe University Institute of Informatics, Ankara, Türkiye
| | - Florent Vanstapel
- Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
- Department of Public Health, Biomedical Sciences Group, Catholic University Leuven, Leuven, Belgium
| | - Marc Thelen
- SKML, Foundation for Quality Assurance in Laboratory Medicine, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marith van Schrojenstein Lantman
- SKML, Foundation for Quality Assurance in Laboratory Medicine, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Result Laboratory for Clinical Chemistry, Amphia Hospital Breda, Breda, The Netherlands
| | | | - Pika Meško Brguljan
- Department of Clinical Chemistry, University Clinic for Respiratory and Allergic Deseases, Golnik, Slovenia
| | - Neda Milinkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Mauro Panteghini
- Research Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Milan, Italy
| | - Guilaine Boursier
- Department of Molecular Genetics and Cytogenomics, Rare Diseases and Autoinflammatory Unit, CHU Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Vanstapel FJLA, Orth M, Streichert T, Capoluongo ED, Oosterhuis WP, Çubukçu HC, Bernabeu-Andreu FA, Thelen M, Jacobs LHJ, Linko S, Bhattoa HP, Bossuyt PMM, Meško Brguljan P, Boursier G, Cobbaert CM, Neumaier M. ISO 15189 is a sufficient instrument to guarantee high-quality manufacture of laboratory developed tests for in-house-use conform requirements of the European In-Vitro-Diagnostics Regulation. Clin Chem Lab Med 2023; 61:608-626. [PMID: 36716120 DOI: 10.1515/cclm-2023-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The EU In-Vitro Diagnostic Device Regulation (IVDR) aims for transparent risk-and purpose-based validation of diagnostic devices, traceability of results to uniquely identified devices, and post-market surveillance. The IVDR regulates design, manufacture and putting into use of devices, but not medical services using these devices. In the absence of suitable commercial devices, the laboratory can resort to laboratory-developed tests (LDT) for in-house use. Documentary obligations (IVDR Art 5.5), the performance and safety specifications of ANNEX I, and development and manufacture under an ISO 15189-equivalent quality system apply. LDTs serve specific clinical needs, often for low volume niche applications, or correspond to the translational phase of new tests and treatments, often extremely relevant for patient care. As some commercial tests may disappear with the IVDR roll-out, many will require urgent LDT replacement. The workload will also depend on which modifications to commercial tests turns them into an LDT, and on how national legislators and competent authorities (CA) will handle new competences and responsibilities. We discuss appropriate interpretation of ISO 15189 to cover IVDR requirements. Selected cases illustrate LDT implementation covering medical needs with commensurate management of risk emanating from intended use and/or design of devices. Unintended collateral damage of the IVDR comprises loss of non-profitable niche applications, increases of costs and wasted resources, and migration of innovative research to more cost-efficient environments. Taking into account local specifics, the legislative framework should reduce the burden on and associated opportunity costs for the health care system, by making diligent use of existing frameworks.
Collapse
Key Words
- AB, accrediting body
- BRCA1/2, breast cancer genes 1 and 2
- CA, competent authority
- CAPA, corrective and preventive actions
- CDx, companion diagnostics
- CGP, comprehensive genomic profile
- CRGA, clinically relevant genomic alterations
- EEA, European economic area
- EFLM, European Federation of Clinical Chemistry and Laboratory Medicine
- EMA, European Medicines Agency
- EU, European Union
- European Regulation 2017/746 on In-Vitro-Diagnostic Devices
- FMEA, failure-mode effects analysis
- GA, genomic alterations
- GDPR, General Data Protection Regulation
- HI, health institution
- HRD, homologous recombination deficiency
- HRR, homologous recombination repair
- ISO 15189:2012
- ISO, International Organization for Standardization
- IVDD, In-Vitro Diagnostic Device Directive
- IVDR, In-Vitro Diagnostic Device Regulation
- LDT, laboratory-developed test
- MDCG, Medical Device Coordination Group
- MSI, micro satellite instability
- MU, measurement uncertainty
- NB, notified body
- NGS, next generation sequencing
- NTRK, neurotrophic tyrosine receptor kinase
- PARPi, poly (ADP-ribose) polymerase inhibitors
- PRRC, person responsible for regulatory compliance
- PT, proficiency testing
- RUO, research use only
- RiliBÄk, Richtlinie der Bundesärztekammer zur Qualitätssicherung Laboratoriums medizinischer Untersuchungen
- SOP, standard operating procedure
- TMB, tumor mutational burden
- UDI, unique device identifier
- VAF, variant allele frequency
- iQC, internal quality control
- laboratory-developed tests for in-house use
- method validation
Collapse
Affiliation(s)
- Florent J L A Vanstapel
- Laboratory Medicine, University Hospital Leuven, Leuven, Belgium
- Department of Public Health, Biomedical Sciences Group, Catholic University Leuven, Leuven, Belgium
| | - Matthias Orth
- Institute of Laboratory Medicine, Vinzenz von Paul Kliniken gGmbH, Stuttgart, Germany
- Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Thomas Streichert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ettore D Capoluongo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Naples, Italy
| | - Wytze P Oosterhuis
- Department of Clinical Chemistry, Reinier Haga Medical Diagnostic Centre, Delft, The Netherlands
| | - Hikmet Can Çubukçu
- Ankara University Stem Cell Institute, Ankara, Türkiye
- Department of Rare Diseases, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Türkiye
| | - Francisco A Bernabeu-Andreu
- Servicio Bioquímica Análisis Clínicos, Hospital Universitario Puerta de Hierro Majadahonda (Madrid), Majadahonda, Spain
| | - Marc Thelen
- Result Laboratory for Clinical Chemistry, Amphia Hospital, Breda, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo H J Jacobs
- Laboratory for Clinical Chemistry and Hematology, Meander Medical Centre, Amersfoort, The Netherlands
| | | | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Patrick M M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Pika Meško Brguljan
- Department of Clinical Chemistry, University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Guilaine Boursier
- Department of Molecular Genetics and Cytogenomics, Rare and Autoinflammatory Diseases Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|